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Computational challenges of wireless networks
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Motivations
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Massive MIMO
(>100 antennas/BS)

OFDM
(>1,000 subcarriers)

Massive IoT Access
(millions/km2)

Ultra-dense Networks
(BS density ~ user density)

Hard large-scale optimization problems are ubiquitous in wireless networks



Computational 
challenges in 
optimizing 
wireless 
networks
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Enormous problem 
scales

Hardness 
(nonconvexity) of 
typical problems

Time-varying 
channels/topologies 
(fading/shadowing, 

mobility)

Real-time 
requirement (e.g., 

AR/VR, UAVs)



Classic algorithmic approaches

• Global optimization algorithms
• exponential time complexity
• only work for very small problems

• Heuristic algorithms
• examples: greedy algorithm for user selection
• hard to design good ones
• non-negligible gap to the optimal solution
• difficult to meet real-time requirement
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The unreasonable effectiveness of “learn to optimize”
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Successes 
of Deep 
Learning



Learning to Optimize

• Observations
• Past data and future problem data have the same distribution
• Deep learning can learn a good algorithm from data 

• Design Goal 
• Automatically learn a real-time near-optimal algorithm for difficult optimization problems
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Optimization 
Algorithm



An early attempt

10

Problem parameters Solution

Optimization 
Algorithm

L2O
Classic 

algorithm

Input
• Channel state
• QoS requirement
• Resource constraints

Output
• Resource allocation
• Detection results

• Sum rate maximization of
interference channel (NP hard).

• A 3-layer multilayer perceptron
(MLP) with [200,80,80] neurons.

[SCS+18]

[SCS+18] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, “Learning to optimize: Training deep neural networks for interference 
management,” IEEE Trans. Signal Process., vol. 66, pp. 5438 – 5453, Oct. 2018.



Limitations of L2O via MLPs

• Poor scalability

• Huge amounts of samples
– Millions of samples;
– Optimal labels are difficult to generate.

• Weak generalization
– The output dimension of neural networks must be fixed.
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Our targets
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• To be trained with thousands of unlabelled 
samples

High sample efficiency

• Be able to work for large scale problems

Scalability

• Be able to generalize to different problem sizes

Good generalization

• Effective in designing good neural architecture

Theory-guided design principles



Deep Learning: 
Alchemy or 
Science?
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GNNs for wireless communications
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Which neural architecture to use?
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• Why MLP is not effective?
– It could not exploit structure information in data.

• A successful story: Convolutional neural network (CNN) for image processing.
– It exploits the shift-invariance, local connectivity, compositionality of images.



A new architecture: Graph Neural Networks (GNNs)

• GNN Applications

16
Recommendation Chemistry Point clouds Graph problems 



Motivations

• Observation: Wireless networks naturally graphs
• Optimization problems in wireless communication are graph optimization

• Basic Idea: Incorporate graph topology into neural networks
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GNN-based framework

• Proposal: A two-stage approach for large-scale network 
optimization
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Optimization
Graph Neural 

Networks SolutionGraph 
Optimization

Problem parameters

Wireless network

Graph features

Communication graph

Problem solution



Stage I: Graph modeling

• Main idea: network topology as graphs
• AP/UE as nodes; 
• Communication links as edges
• Channel information as edge features

• Typical examples: 1) user admission; 1) power control; 2) (hybrid) beamforming

19



Stage II: Graph neural networks

• Key idea: neural message-passing between nodes
• Two stages: message encoding & message aggregation
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GNNs for wireless networks
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BSs aggregating information from UEs

Message

Aggregate

Learned BS representation vector

Learned UE
representation CSI

UEs aggregating information from BSs

Message

Aggregate

Learned BS
representation

Learned UE representation vector

CSI

(                                                 ) are 
learnable weight matrices



Why GNN? – Theoretical support

• A class of distributed algorithms called distributed message passing (DMP), including 
many classic algorithms

• Fractional programming for power control [Shen18TSP]

• WMMSE for beamforming [Shi11TSP]

• Riemannian gradient for hybrid precoding [Yu16JSTSP]

• Theorem: equivalence between GNNs and DMP algorithms
1. GNNs are special cases of DMP algorithms
2. For any DMP algorithm, there exists a GNN that approximates it well
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Why GNN? – Theoretical support

• Theorem: equivalence between GNNs and DMPs
1. GNNs are special cases of DMPs
2. For any DMP algorithm, there exists an GNN that approximate it well

• Interpretations: 
1. The distributed property allows GNNs to achieve:

• Good generalization: To generalize to any number of UEs/APs during the test
• High computation efficiency: To have constant running time independent of number of UEs/APs

2. If a GNN is trained well, its performance is at least as good as DMPs
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Case study: Power control

• Sum rate maximization in K-user interference channel 
• is the direct channel of k-th user
• is the interference channel between j-th and k-th user
• is the power for k-th transmitter

• NP-hard
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We adopt unsupervised training, i.e., no label is needed!



Simulations: GNN vs. Distributed Algorithm
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• A 1-layer GNN outperforms WMMSE (it belongs to DMP) with 10 iterations.

• A 2-layer GNN outperforms WMMSE with 30 iterations.



Simulations: Improved performance

• Legends
• EGGNN: Proposed GNN method
• WMMSE: a widely adopted optimization-

based method [Shi11TSP]

• DNN: DNN-based method [Sun18TSP]

• Advantages
• Near-optimal performance, better than 

WMMSE
• Much better scalability than DNN

26
Performance is normalized by the best of 
FPlinQ with 100 different initialization points



Simulations: Scalability

• Setting: GNN trained on 50 users and 
test on different numbers of users

• Advantages
• Orders of magnitude of speedups
• On CPU,  computation time is reduced by 

100~1000 times compared with WMMSE
• Nearly constant time scale up on GPU
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6 ms for thousands of 
users;

100,000x reduction!



Simulations: Generalization

• Generalization to larger scales
• Trained with 50 pairs in a 1000m×1000m 

region.
• Test with different numbers of pairs while 

the density of users is fixed.

• Generalization to higher densities
• Trained with 50 pairs in a 1000m×1000m 

region.
• Change the number of pairs in the test set 

while fixing the area size.
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Theoretical analysis: GNN vs. MLP
The reasonable effectiveness of GNNs
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Theoretical analysis

• So far, we have shown
• Incorporating prior knowledge of wireless communications into neural 

architectures improves performance

• Goal of this part: to theoretically characterize
• How many training samples are needed to train the neural network well?
• How much performance gains can “structure” bring?
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Generalization analysis of deep learning

• Generalization Analysis via PAC-learning
• Test data are drawn i.i.d. from unknown distribution D;
• is an oracle algorithm generating an optimal solution;
• is neural network where W is weight obtained by training;
• Given N training samples, if with probability at least   , we have

• then we call         is             learnable by this neural network.
• The minimum number of training samples N is called the sample complexity 

• Key idea (algorithmic alignment) 
• If the neural network shares a common structure with the oracle function         , then the 

sample complexity is low.
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Keyulu Xu, Jingling Li, et. al, “What can neural networks reason about?” ICLR 2020.



Main result

• Target Example: GNNs versus unstructured deep neural networks (DNNs), i.e., 
MLP, for “learning to optimize” to solve large-scale graph optimization problems.

• Theorem: Consider an optimization problem on a |V|-node graph.
• For GNNs, it is -learnable.
• For MLPs, it is                                          -learnable.

• is a constant related to 
1. maximum degree of the graph; 
2. optimization objectives; 
3. NN substructure, e.g., activation.

32



Proof sketch

• Lemma 1: For any graph optimization problem, there exists a distributed 
message passing  algorithm that can solve it.

• Lemma 2: If the neural network A can simulate the task algorithm with n
modules, and each module is               learnable, then the task is             
learnable by A.

• Lemma 3: To simulate a DMP algorithm, 
• GNNs require         modules that are                         learnable;
• MLPs require           modules that are                  learnable.
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𝜀𝜀, 𝛿𝛿,𝑀𝑀/𝑛𝑛 𝜀𝜀, 𝛿𝛿,𝑀𝑀

GNNs aligns with DMP algorithms better than MLPs



Corollary: GNNs vs. MLPs

• To learn DMP algorithms to solve a graph optimization problem.
• For GNNs, it is -learnable
• For MLPs, it is                                             -learnable

GNNs vs. MLPs (sample complexity)
• GNNs require            times fewer training samples than MLPs.
• GNNs’ performance gap to the optimal solution is          times lower than 

MLPs (see our paper for more details).
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Simulations: Sample complexity

• We consider K-user interference 
channel power control.

• Theory: MLPs require           times 
more training samples than GNNs.

• Simulations
• For 10 users, MLPs require 100 times 

more training samples;
• For 20 users, MLPs require 400~600 

times more training samples.

35
Performance is normalized by the best of 
FPlinQ with 100 different initialization points



Corollary: Stable performance of GNNs

• Consider a graph optimization problem on graph  
• For GNNs, it is -learnable

• is a constant related to 1) maximum degree of the graph; 2)
optimization objectives; 3) NN substructure, e.g., activation.

Stable performance of GNNs
• If the maximum degree does not change, the performance of GNNs is stable 

and independent of the node (user) number;
• Neural architectures can be specially designed to improve the bound.
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Simulations: Neural architecture design

• Legends
• PCGNN: GNN designed to optimize 

the bound
• EGGNN: [Shen20JSAC]

• FPlinQ: optimization-based method 
(fractional programming)

• MLP: MLP-based method [Sun18TSP]

• Simulations
• PCGNN shows consistently better 

performance than ECGNN.
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Performance is normalized by the best of 
FPlinQ with 100 different initialization points

PCGNN outperforms Best 
FPlinQ (among 100 trials)



Conclusions
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Conclusions

• GNNs for wireless communications
• Good performance (beat SOTA algorithms)
• Good generalization (to different problem sizes)
• High computational efficiency (orders of magnitude speedup)
• Wide applications

• The reasonable effectiveness of GNNs
• The common structure in the target task and neural network 

improves sample efficiency and performance
• Supported quantitively via PAC-learning theory + algorithmics 

alignment

• For reproducibility
• https://github.com/yshenaw/GNN4Com
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https://github.com/yshenaw/GNN4Com


Future directions

• The picture is far from complete!
• Extend to other applications

• GNNs for channel estimation
• GNNs for MIMO detection
• …

• Extend to other learning approaches
• GNNs with model-driven deep learning

• Further improve robustness to distribution shift
• To improve out of distribution (OOD) generalization
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• For more details
https://eejzhang.people.ust.hk/

Thank you!

https://eejzhang.people.ust.hk/

	The Unreasonable Effectiveness of�  �Graph Neural Networks for Wireless Communications
	Outline
	Computational challenges of wireless networks
	Motivations
	Computational challenges in optimizing wireless networks
	Classic algorithmic approaches
	The unreasonable effectiveness of “learn to optimize”
	Successes of Deep Learning
	Learning to Optimize
	An early attempt
	Limitations of L2O via MLPs
	Our targets
	Deep Learning: Alchemy or Science?
	GNNs for wireless communications
	Which neural architecture to use?
	A new architecture: Graph Neural Networks (GNNs)
	Motivations
	GNN-based framework
	Stage I: Graph modeling
	Stage II: Graph neural networks
	GNNs for wireless networks
	Why GNN? – Theoretical support
	Why GNN? – Theoretical support
	Case study: Power control
	Simulations: GNN vs. Distributed Algorithm
	Simulations: Improved performance
	Simulations: Scalability
	Simulations: Generalization
	Theoretical analysis: GNN vs. MLP
	Theoretical analysis
	Generalization analysis of deep learning
	Main result
	Proof sketch
	Corollary: GNNs vs. MLPs
	Simulations: Sample complexity
	Corollary: Stable performance of GNNs
	Simulations: Neural architecture design
	Conclusions
	Conclusions
	Future directions
	References
	Slide Number 42

