
Content Caching at the Wireless Network Edge: A

Distributed Algorithm via Belief Propagation

Juan Liu†, Bo Bai‡, Member, IEEE, Jun Zhang†, Senior Member, IEEE, and Khaled B. Letaief†∗, Fellow, IEEE
†Department of Electrical and Computer Engineering

The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
‡Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

∗Hamad bin Khalifa University, Doha, Qatar

Email: eejliu@ust.hk, eebobai@tsinghua.edu.cn, eejzhang@ust.hk, eekhaled@ust.hk

Abstract—Caching popular contents at the edge of wireless
networks has recently emerged as a promising technology to
improve the quality of service for mobile users, while bal-
ancing the peak-to-average transmissions over backhaul links.
In contrast to existing works, where a central coordinator is
required to design the cache placement strategy, we consider a
distributed caching problem which is highly relevant in dense
network settings. In the considered scenario, each Base Station
(BS) has a cache storage of finite capacity, and each user will
be served by one or multiple BSs depending on the employed
transmission scheme. A belief propagation based distributed
algorithm is proposed to solve the cache placement problem,
where the parallel computations are performed by individual
BSs based on limited local information and very few messages
passed between neighboring BSs. Thus, no central coordinator
is required to collect the information of the whole network,
which significantly saves signaling overhead. Simulation results
show that the proposed low-complexity distributed algorithm
can greatly reduce the average download delay by collaborative
caching and transmissions.

I. INTRODUCTION

With the increasing demand of high-speed data traffics,

especially due to Video on Demand (VoD) streaming, wireless

networks are expected to provide extremely high throughput

and ultra low latency services for massive mobile users. To

deal with the stringent Quality of Service (QoS) requirements,

the dense deployment of wireless small cells and fog style

access points has attracted much attention from both academia

and industry [1]–[3]. However, undesirably large latency could

be induced during peak-traffic hours due to huge traffic re-

quirement from vast users. A promising solution is to push the

popular contents towards users by caching them at the edge of

wireless networks, such as Base Stations (BSs) and terminal

devices with computation and storage capacities. With the

aid of distributed caching, the file delivery service of mobile

users consists of two phases [4]: a cache placement phase,

which determines the cache content at each BS, and a content

This work was supported in part by the Hong Kong Research Grant
Council under Grant No. 610113. This work is also supported in part by
national Nature Science Foundation of China (NSFC) project under Grant
No. 61401249 and 61322111, Specialized Research Fund for the Doctoral
Program of Higher Education (SRFDP) under Grant 20130002120001, and
National basic research program of China (973 Program) No. 2013CB336600.

delivery phase, which allows the BSs to deliver the requested

files to the users over wireless channels.

Recently, many research interests have been aroused to

investigate the content caching problem for wireless networks

[5]–[9]. In [5], the cache placement problem was studied based

on the statistics of users’ file requests under the constraints of

storage capacities in femtocell networks, where femtocell BSs

are deployed to act as helper nodes to cache popular files.

In [6], the design of optimal cache placement was pursued

for wireless networks, considering the extra delay induced

via backhaul links and physical-layer transmission parameters.

Taking physical-layer transmission into account, the authors of

[7] investigated the caching performance in terms of average

delivery rate and outage probability for wireless small-cell

networks, where the random deployment of cache-enabled BSs

follows a Poisson point process. In [8], the throughput-outage

tradeoff performance was investigated for wireless networks

by exploiting clustered device caching via Device-to-Device

(D2D) communications. In [9], given the caching placement,

joint backhaul data assignment and beamforming was designed

for the file delivery phase.

A carefully designed cache placement strategy is expected

to provide flexible transmission opportunities for users with

different QoS demands in the delivery phase. Usually, a coor-

dinator is required in the placement phase to collect network-

wide information (e.g. the storage capacities of different

BSs, the connectivity between BSs and users), and perform

calculations during algorithm design. However, coordination

may not be possible in some self-organized networks, where

no central controller exists. Without a central coordinator,

[10] developed a decentralized caching algorithm to create

simultaneous coded-simulcasting opportunities among users.

In this paper, we propose a novel distributed approach for

the cache placement in the cache-enabled wireless networks.

Each BS has a cache storage with finite capacity, and each

user can be served by one or multiple BSs. Considering

multiple candidate transmission schemes for each user, we

formulate an optimization problem to minimize the average

download delay subject to the BS’s storage capacities, which,

however, is NP-hard. To deal with this difficulty, we develop

a belief propagation based distributed algorithm to perform

distributed caching without a central coordinator. Based on

1
2

N

server

backhaul link

BS
BS

BS

1
2

N

2
N

1

control link

files

Core

Network

Fig. 1. An example of the considered network.

local information of its storage capacity, the users in its

serving cell and their file request statistics, each BS will

perform iterative computations and exchange its belief on

the local caching strategy with neighboring BSs, which are

collaborators of file transmissions to their common users.

Through iterations, the distributed algorithm converges to a

suboptimal caching solution. Simulation results show that the

proposed distributed algorithm can significantly reduce the

average download delay, thanks to collaborative caching and

transmission. It is also shown that the performance of the

proposed distributed algorithm is comparable to the centralized

greedy algorithm in [5].

II. NETWORK MODEL

As shown in Fig. 1, we consider a wireless network consist-

ing of M BSs and K user terminals. Let A = {a1, · · · , aM}
and U = {u1, · · · , uK} denote the BS set and the user set,

respectively. Each user can be served by one or multiple

BSs, depending on the employed transmission scheme. The

connectivity between the users and BSs is denoted by a K×M

matrix L, where each binary element lkm indicates whether

user uk can be served by BS am. That is, lkm = 1 if user uk is

located in the coverage range of BS am. Otherwise, lkm = 0.

The set of users in the coverage range of BS am is denoted

by Um = {uk ∈ U|lkm = 1}. Similarly, the set of service BSs

of user uk is denoted by Ak = {am ∈ A|lkm = 1}.

Assume that the library of N files, denoted by F =
{f1, · · · , fN}, is stored at one or multiple content servers

which could be far away in the core network. Suppose that all

the files have the same size, i.e., |fn| = |f | (∀fn ∈ F). The

file popularity distribution conditioned on the event that user

uk makes a request is denoted by pnk, which can be viewed as

the user preference indicator and estimated via some learning

procedure [11]. The user’s file preferences are normalized such

that
∑N

n=1 pnk = 1. We also assume that each BS am has

a finite-capacity storage storing some of the popular files.

Denote by Qm the normalized storage capacity of BS am.

This means that each BS am can store at most Qm files. Let

xnm be a binary variable indicating whether file fn is cached

at BS am. That is, xnm = 1 if file fn is stored at the buffer

of BS am, and otherwise xnm = 0. Therefore, the matrix X

consisting of the variables {xnm} (fn ∈ F , am ∈ A) can be

used to denote the caching strategy.

Each time when one user uk makes a request for file fn,

the associated BSs Ak can jointly decide how to transmit to

this user based on the caching strategy X . If file fn is cached

in one BS am ∈ Ak, this BS will transmit the file to user uk

directly. If the file is cached in more than one BS, the BSs

can cooperatively transmit to the user in different ways. For

example, when the instantaneous channel state information is

available, the BSs can transmit their cached file fn to the user

with cooperative beamforming. Otherwise if the file has not

been cached in any of the associate BSs Ak , one BS will fetch

the file from a content server via the backhaul link and then

transmit it to the user.

III. DISTRIBUTED CACHE PLACEMENT PROBLEM

In this section, we will formulate the cache placement

problem to minimize the average delay of all the users.

Let D̄nk(X) denote the average delay for user uk to

download file fn from its service BSs Ak or a far-away content

server given any caching strategy X . The cache placement

problem can be formulated as follows

min
{xnm}

1

K

K∑

k=1

N∑

n=1

pnkD̄nk(X)

s.t.

{∑N

n=1 xnm ≤ Qm, ∀am ∈ A, (a)

xnm ∈ {0, 1}, ∀fn ∈ F , am ∈ A, (b)

(1)

where constraint (1.a) means that each BS am is allowed to

cache at most Qm files. Since the variable xnm is binary,

problem (1) is a constrained integer programming problem

and is generally NP-hard [12]. Thus, it is challenging to find

the optimal solution X∗ to problem (1).

In the considered system, the serving BSs of user uk can

cooperatively deliver the files to this user in different ways if

they have cached the requested files, as discussed in Section II.

As a matter of fact, the value of D̄nk(X) can be obtained in an

oracle way for any fixed or cooperative transmission scheme

given the caching strategy X . We will give some examples of

transmission schemes and show how to calculate the average

delay D̄nk(X) below. Denote by hkm(i) the channel gain

between user uk and BS am in time slot i. Suppose that

hkm(i) is identically and independently distributed (i.i.d.)

across the time slots i. Notice that the users’ file delivery

rate, measured by the channel capacity, is highly related to a

specific transmission scheme applied.

1) Fixed transmission: Each user uk gets file fn from a

fixed BS am. The delivery rate in slot i can be computed as

Rnk(X, i) = B log
(
1 + |hkm(i)|

2
lkmγmxnm

)
, (2)

where B is the system bandwidth and γm is the equivalent

transmit Signal-to-Noise Ratio (SNR), respectively.

2) Cooperative beamforming: If cooperative beamforming

is applied by the associated BSs Ak, the delivery rate of user

uk in slot i is given by

Rnk(X, i) = B log

(
1 +

∑

am∈Ak

hkm(i)vkm(i)lkmγmxnm

)
,

(3)

where vkm(i) is the beamforming coefficient in slot i. In

this context, the delivery rate Rnk(X, i), as a function of

the random channel gains hkm(i) for m = 1, 2, . . . ,M , is a

random variable and also i.i.d. across time slots for any given

physical-layer transmission scheme.

Given the caching strategy X , it takes at least T ∗
nk(X) time

slots for user uk to download file fn, where T ∗
nk(X) satisfies

T ∗
nk(X) = argmin

{
T :

T∑

i=1

Rnk(X, i) ≥
|fn|

∆t

}
. (4)

In (4), ∆t is the duration of one time slot and |fn| is the size

of file fn. Since the delivery rates Rnk(X, i) (i = 1, · · · , T)
are i.i.d. random variables, T ∗

nk(X) given by (4) is also a

random variable. By martingale theory [13], we then evaluate

the average download delay in the following theorem.

Theorem 1. If user uk downloads file fn from the associated

BSs, the average download delay is given by

D̄nk(X) = Eh{T
∗
nk(X) ·∆t} =

|fn|

Eh {Rnk(X)}
. (5)

where Eh {·} is the expectation over the channel gain h.

Otherwise, if user uk has to download file fn from a content

server, the download delay can be estimated by a large

constant delay D∗.

Proof: Based on the definition of channel capacity,

we have Rnk(X, i) ≥ 0 for i = 1, 2, . . . , T ∗
nk(X),

where T ∗
nk(X) is a stopping time given by Eq. (4). Ac-

cording to Wald’s Equation in martingale theory [13],

we have Eh

{∑T∗

nk(X)
i=1 Rnk(X, i)

}
= Eh {T ∗

nk(X)} ·

Eh {Rnk(X)} = |fn|
∆t

. Thus, Eq. (5) is established.

Given any transmission scheme, we can evaluate the average

download delay by (5).

IV. BELIEF PROPAGATION BASED DISTRIBUTED CACHING

To avoid heavy overhead on collecting global network

information, the BSs have to learn the network information,

such as the connectivity, users’ file preference statistics, and

candidate transmission schemes with their associated delay

metrics, etc., and carry out distributed caching autonomously,

relying on local interactions between BSs in the neighborhood.

To this end, we propose a belief propagation (BP) based

distributed algorithm to perform cooperative caching.

A. Message Passing Procedure

First, we briefly introduce the factor graph model and the

max-product algorithm. A factor graph is a bipartite graph

which consists of I variable nodes {µ1, · · · , µI} and J

function nodes {F1, · · · , FJ}. Let Γµ
i and ΓF

j denote the set of

indices of the neighboring function nodes of a variable node

µi and that of the neighboring variable nodes of a function

node Fj , respectively. Max-product is a belief propagation

algorithm based on factor graph model, which is widely

applied to find the optimum of the global function taking the

form as F (µ) =
∏J

j=1 Fj(µΓF
j
) in a distributed manner. A

comprehensive tutorial can be found in [14].

In each iteration, each variable node sends one updated

message to one of its neighboring function nodes and receives

one updated message from this node. Let mt
µi→Fj

(x) denote

the message from a variable node µi to a function node Fj , and

mt
Fj→µi

(x) denote the message from a function node Fj to a

variable node µi, respectively. According to the max-product

algorithm [14], the message mt
µi→Fj

(x) is updated as

mt+1
µi→Fj

(x) =
∏

l∈Γµ
i
\{j}

mt
Fl→µi

(x), (6)

which collects all the beliefs on the value of µi = x from the

neighboring function nodes Fl(l ∈ Γµ
i \{j}) except Fj . The

message mt
Fj→µi

(x) is updated as

mt+1
Fj→µi

(x) = max
l∈ΓF

j
\{i}

{
Fj(X)

∏

l

mt
µl→Fj

(xl)

}
, (7)

which achieves the maximization of the product of the local

function Fj(X) and incident messages over configurations in

ΓF
j \{i}. In iteration t, the belief on µi = x is obtained as

bt+1
i (x) =

∏

j∈Γµ
i

mt
Fj→µi

(x), (8)

which is the product of all the messages incident to µi.

B. Factor Graph Model for Cache Placement

To apply the belief propagation algorithm, we transform

problem (1) into an unconstrained optimization problem, and

then present the factor graph model for this problem.

Lemma 2. Let C = {(fn, uk)|pnk > 0, fn ∈ F , uk ∈ U}
denote the set of all possible pairs of user uk and file fn. The

problem (1) is equivalent to the following problem

X̂ = arg max
X∈{0,1}NM

∏

(fn,uk)∈C

ηnk(X)

M∏

m=1

gm(X), (9)

where ηnk(X) and gm(X) are defined as

ηnk(X) = exp
(
−pnkD̄nk(X)

)
, (10)

and

gm(X) =

{
1,

∑N

n=1 xnm ≤ Qm,

0, otherwise,
(11)

respectively.

Proof: At first, problem (1) is equivalent to maximiz-

ing −
∑K

k=1

∑N

n=1 pnkD̄nk(X) subject to the constraints∑N
n=1 xnm ≤ Qm for all m. Then, exponential function

ηnk(X) and the indicator function gm(X) are introduced to

convert the equivalent optimization problem into a product

form, as presented in (9).

In (9), ηnk(X) is used to measure the delay performance

when transmitting file fn to user uk, and gm(X) imposes a

strict constraint on the cache capacity of each BS am.

file

BS 2

User 1

User 2

User 3

1

2
BS 1

(a) Connectivity between BSs and users

BS 1 BS 2 BS 2

BS 1 BS 2

BS 1 BS 2

(b) The factor graph model

Figure 2. An example: (a) a system with 2 BSs, 3 users, and a library of 2
files, (b) the factor graph model.

According to the optimization problem (9) and the network

topology (e.g., Fig. 2(a)), we define a variable node µi for

each element xnm and a function node Fj for each function

ηnk(X) or gm(X), as shown in Fig. 2(b). We can express the

mapping rule as

µi
.
= xnm, i = (m− 1)N + n, (12)

Fj
.
=

{
ηnk, j =

∑k−1
k
′=1

|Fk
′ |+ ξ(n, k),

gm, j =
∑K

k=1 |Fk|+m,
(13)

where Fk is the set of files requested by user uk, defined as

Fk = {fn|pnk > 0}, |Fk| denotes the number of elements

in the set Fk, and ξ(n, k) denotes the index of file fn (with

positive pnk) in the set Fk.

In the bipartite factor graph (e.g., Fig. 2(b)), each variable

node µi
.
= xnm connects to the function nodes {Fj}

.
=

{ηnk} ∪ {gm} for all uk ∈ Um. Similarly, each function node

Fj
.
= ηnk connects to the variable nodes {µi = xnm} for all

am ∈ Ak. Each function node Fj
.
= gm is adjacent to the

variable nodes {µi
.
= xnm} for all fn ∈ F . Hence, there are

I = NM variable nodes and J = M +
∑K

k=1 |Fk| function

nodes in this factor graph model.

C. Message Passing Procedure for Cache Placement

Our goal is to design a message-passing procedure which

allows us to gradually approach the optimal solution to (9).

1) Message Update : Since all the variables {xnm} are

binary, it is sufficient to pass the scalar ratio of the messages

between each pair of nodes in practice. Moreover, we can

express the message ratios in the logarithmic domain as

αt
i→j = log

(
mt

µi→Fj
(1)

mt
µi→Fj

(0)

)
, βt

j→i = log

(
mt

Fj→µi
(1)

mt
Fj→µi

(0)

)
,

(14)

where αt
i→j is sent from the variable node µi to the function

node Fj , and βt
j→i is sent from the function node Fj to the

variable node µi, as shown in Fig. 2(b). In this way, the product

operations in (6) and (7) become simple additive operations

in the logarithmic domain. And only half of the messages

are actually calculated and passed. Thus, the computation

complexity and communication overhead are greatly reduced.

The messages αt
i→j and βt

j→i also reflect the beliefs for the

value of µi in each iteration t.

Then, we present the practical message passing procedure

in the following theorem.

Theorem 3. The message αt
i→j is updated as

αt+1
i→j =

∑

l∈Γµ
i
\{j}

βt
j
′→i

. (15)

When Fj
.
= ηnk, the message βt+1

j→i is given by

βt+1
j→i = pnk

(
D̄nk(X

t
i,0)− D̄nk(X

t
i,1)
)
, (16)

where the caching vectors Xt
i,0 and Xt

i,1 can be obtained by

assigning their elements as

xnm
.
= µl =

{
1, l ∈ Et

i = {i1 ∈ ΓF
j \{i}|α

t
i1→j > 0},

0, otherwise,

and

xnm
.
= µl =

{
1, l ∈ Et

i ∪ {i},

0, otherwise,

respectively. When Fj
.
= gm, the message βt

j→i is updated as

βt+1
j→i = min

{
0,−α

(Qm)
l→j (t)

}
, (17)

where α
(Qm)
l→j (t) is the Qm-th message among the messages

{αt
l→j} (l ∈ ΓF

j \{i}) sorted in the descending order.

Proof: The proof is omitted due to limited space.

2) Belief Update : Similarly, we obtain the ratio of the

belief (c.f. (8)) in the logarithmic domain as

b̃ti = log

(
bti(1)

bti(0)

)
=
∑

j∈Γµ
i

βt
j→i, (18)

where βt
j→i is given by (17) for Fl

.
= gm, and by (16) for Fj

.
=

ηnk (j ∈ Γµ
i \{l}), respectively. As a result, the estimation of

µi can be expressed as

µ̂t
i =

{
1, if b̃ti > 0,

0, if b̃ti < 0.
(19)

In each iteration t, each variable node µi updates its belief on

its associated variable xnm according to (18) and makes an

estimate of xnm according to (19) till it converges.

Algorithm 1 BP based distributed cache placement algorithm

1: Map ηnk, gm to Fj and xnm to µi for ∀n, k,m,

2: Set t = 0 and αt
i→j = βt

j→i = 0, ∀i, j,

3: Set tmax as a sufficiently large constant.

4: while Not convergent and t ≤ tmax do

5: for m = 1 : M do

6: for n = 1 : N do

7: Calculate αt
i→j by (15);

8: for k ∈ Ũm do

9: Calculate βt
j→i by (16) for Fj

.
= ηnk;

10: end for

11: end for

12: Calculate βt
j→i by (17) for Fj

.
= gm;

13: Calculate the belief b̃ti by (18);

14: Estimate the variable µ̂i by (19);

15: end for

16: Check the convergence, and set t = t+ 1;

17: end while

18: Obtain the optimal estimate X̂ to the solution of (9).

D. Distributed Algorithm Design

When we map the message passing procedure derived on the

factor graph (e.g., Fig. 2(b)) back to the original network graph

(e.g., Fig. 2(a)), we notice that all the messages are updated

at the BSs and only some of them will be exchanged between

neighboring BSs.

1) Scenario I: When user uk is connected to one single BS

am, as shown in Fig. 2(b), the update of messages αt
i→j and

βt
j→i is performed at this BS for the variable nodes µi

.
= xnm,

the function nodes Fj
.
= ηnk, and Fj

.
= gm. In this case, each

BS am performs the message calculation and belief update for

all the users within its coverage, i.e., uk ∈ Um.

2) Scenario II: When user uk is connected to multiple BSs

Ak, the update of messages αt
i→j and βt

j→i associated with

the function node Fj
.
= ηnk is performed at one BS am and

will be exchanged between the service BSs of this user Ak

over control links, as shown in Fig. 1.

Notice that message exchanges just take place in Scenario

II. Thus, the communication overhead induced in this scenario

depends on the number of common users covered by multiple

BSs. From the above discussion, we summarize the message

passing based distributed caching algorithm in Algorithm 1.

In this algorithm, the message update for each user should be

performed just once by one single BS in each iteration. To

avoid confusion, Ũm is used to denote the set of users whose

messages are processed by BS am in Algorithm 1.

V. SIMULATION RESULTS

In this section, we present simulation results to demon-

strate the performance of the proposed caching algorithm.

We consider a small-cell or fog style networking, where

each of the M circular cells has a radius of 150m and the

distance between neighboring BSs is set as 200m. K users are

uniformly and independently distributed in the area covered

by the M cells. The users’ file requests follow the Zipf

distribution with parameter γk = 0.3 + k
K
(3 − 0.3), i.e.,

we assume different users have different request distributions.

The users in the middle of a cell are served by just one

single BS, while the users in the overlapping area of cells are

covered by multiple BSs and thus cooperative transmission

may be enabled. The connectivity between BSs and users

is thus established. Suppose that the system bandwidth is

5MHz, and the length of each slot is 20ms. The file size

is set to be 100Mbits. The path-loss exponent is set as 3.5.

The small-scale channel gain |hkm|2 follows independently

standard exponential distribution in each slot. Assuming that

no inter-cell interference is induced by adopting appropriate

scheduling policies, the transmit power is set to make sure that

the average received SNR at the cell edge is equal to 0dB. We

also set K = 100, M = 10, N = 100, and D∗ = 40s.

In Fig. 3, we compare the average download delay of the

distributed algorithm with that of the centralized greedy algo-

rithm in [5] by applying cooperative beamforming and fixed

transmissions, respectively. For performance comparison, we

also demonstrate the popular caching algorithm as a baseline,

which caches the most popular files based on the statistical

preference of the users in the whole network. Considering

different file preferences, the users request files with randomly

permuted probability n−γk
∑

N
n=1

n−γk
over n = 1, · · · , N . From

Fig. 3, the average download delay monotonically decreases

with the increase of the cache capacity Qm = Q. This is

due to the fact that with the increase of storage capacity, more

files are cached in each BS and more users can download files

from local BSs instead of the content server. Accordingly, the

average download delay is greatly reduced.

One can also see that the average delay performance is

significantly improved, when cooperative transmission instead

of fixed transmission is used. And the performance gap

between cooperative transmission based caching and fixed

transmission based caching becomes larger as the cache ca-

pacity increases, since more files can be cached to facilitate

cooperative transmission for cell-edge users. In the scenario of

either cooperative or fixed transmission, cooperative caching

performs much better than popularity-based caching, except

the case when all the files are cached in each BS with Q = N .

This is because that cooperative caching is performed based on

the more accurate estimation of the diverse file preferences of

individual users. While the popularity-based caching algorithm

performs caching based on the statistical preference of a

very large number of users, which could not reflect the file

preferences of individual users.

Observed from Fig. 3, the proposed belief propagation based

algorithm can achieve a nearly identical delay performance as

compared to the centralized greedy algorithm which gives a

performance guarantee [5], i.e., 1
2 of the optimal value. It

has a slightly larger delay performance in the small-capacity

region when Q is less than 40, and achieves almost the same

performance as the greedy algorithm in other scenarios.

We plot in Fig. 4 the iterative procedure of the belief

propagation based algorithm for different storage capacities

Qm = Q, when cooperative transmission is adopted. It is

observed that the average delay starts from an initial value,

and gradually converges to an appropriate solution through a

few iterations up to hundreds of iterations, depending on the

10 20 30 40 50 60 70 80 90
5

10

15

20

25

30

35

Cache capacity Q

T
h

e
 a

v
e

ra
g

e
 d

o
w

n
lo

a
d

 d
e

la
y

Centralized algorithm in [4]

Distributed algorithm

Popularity−based caching

cooperative transmission

fixed transmission

Figure 3. The average download delay vs. cache capacity Q.

0 50 100 150 200
5

10

15

20

25

Iteration index

T
h

e
 v

a
lu

e
 i
n

 e
a

c
h

 i
te

ra
ti
o

n

Q=10

Q=30

Q=50

Q=70

Q=90

Figure 4. The iterative procedure of the proposed distributed algorithm.

system parameters.

In Fig. 5, we demonstrate the computational complexity of

the proposed algorithm and the centralized greedy algorithm,

when cooperative transmission is adopted. Here, we measure

the computational complexity by the number of calculations

used in the algorithm. It is observed that the total number

of calculations of the proposed distributed algorithm required

by all the BSs is much smaller than that of the greedy

algorithm. By sharing computing tasks, each individual BS

does much fewer calculations when running the distributed

algorithm. Moreover, with the increase of cache capacity,

more elements are added greedily when the greedy algorithm

is adopted. Hence, the cache capacity has a great impact

on the computational complexity when running the greedy

algorithm. When applying the distributed algorithm, the cache

capacity is a parameter which only adjusts the value of the

messages during iterations. It does not change the factor graph

model, and hence may not cause a significant impact on its

computational complexity.

VI. CONCLUSIONS

In this work, we studied the cache placement problem for

small-cell wireless networks, considering different physical-

layer transmission schemes for each user. To avoid heavy

overhead in collecting global network information, we pro-

posed a belief propagation based algorithm to place files at

10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3
x 10

7

Cache capacity Q

T
h
e
 n

u
m

b
e
r

o
f
c
a
lc

u
la

ti
o
n
s

Centralized algorithm in [4]

Distributed algorithm run at each BS

Distributed algorithm run over all BSs

Figure 5. The number of calculations vs. cache capacity Q.

BSs in a distributed way. By collecting local information of

storage capacities, the users’ request statistics and candidate

transmission schemes, each BS will run computations and

exchange very few messages with its neighboring BSs iter-

atively till convergence. Simulation results demonstrated that

the proposed simple distributed algorithm can significantly

improve the file delivery performance by collabrative caching

and transmissions.

REFERENCES

[1] J. Andrews, “Seven ways that HetNets are a cellular paradigm shift,”
IEEE Commun. Mag., vol. 51, no. 3, pp. 136–144, Mar. 2013.

[2] Y. Shi, J. Zhang, K. B. Letaief, B. Bai, and W. Chen, “Large-scale convex
optimization for ultra-dense cloud-RAN,” IEEE Wireless Communica-

tions, vol. 22, no. 3, pp. 84–91, Jun. 2015.
[3] C. Li, J. Zhang, and K. B. Letaief, "Throughput and energy efficiency

analysis of small cell networks with multi-antenna base stations," IEEE

Trans. Wireless Commun., vol. 13, no. 5, pp. 2502-2517, May 2014.
[4] M. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE

Trans. Inform. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.
[5] N. Golrezaei, K. Shanmugam, A. Dimakis, A. Molisch, and G. Caire,

“FemtoCaching: Wireless video content delivery through distributed
caching helpers,” in Proc. IEEE INFOCOM, Mar. 2012, pp. 1107–1115.

[6] X. Peng, J.-C. Shen, J. Zhang, and K. B. Letaief, “Backhaul-aware
caching placement for wireless networks,” in Proc. IEEE Globecom,
Diego, CA, Dec. 2015.

[7] E. Baştuǧ, M. Bennis, M. Kountouris, and M. Debbah, “Cache-enabled
small cell networks: Modeling and tradeoffs,” EURASIP J. Wirel. Com-

mun. Netw., vol. 2015, no. 1, p. 41, Feb. 2015.
[8] M. Ji, G. Caire, and A. Molisch, “Wireless device-to-device caching

networks: Basic principles and system performance,” IEEE J. Sel. Areas

Commun., vol. PP, no. 99, pp. 1–1, 2015.
[9] X. Peng, J.-C. Shen, J. Zhang, and K. B. Letaief, "Joint data assignment

and beamforming for backhaul limited caching networks," in Proc. IEEE

PIMRC, Washington, DC, Sept. 2014.
[10] M. Maddah-Ali and U. Niesen, “Decentralized coded caching attains

order-optimal memory-rate tradeoff,” IEEE/ACM Trans. Networking,
vol. 23, no. 4, pp. 1029–1040, Aug. 2015.

[11] B. N. Bharath, K. G. Nagananda, and H. V. Poor, “A learning-based
approach to caching in heterogenous small cell networks,” Aug. 2015.
[Online]. Available: http://arxiv.org/abs/1508.03517

[12] K. Shanmugam, N. Golrezaei, A. Dimakis, A. Molisch, and G. Caire,
“FemtoCaching: Wireless content delivery through distributed caching
helpers,” IEEE Trans. Inform. Theory, vol. 59, no. 12, pp. 8402–8413,
Dec. 2013.

[13] David Williams, Probability with Martingale. Cambridge University
Press, 1991.

[14] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp.
498–519, Feb. 2001.

