Task-oriented and Semantic-aware Communications and Networking for 6G

Task-oriented and Semantic-aware Communication for Edge Video Analytics

Jun Zhang

ICC 2023 tutorial -- "Task-oriented and semantic-aware communications"

Outline

- Background: Edge inference and task-oriented communication
- Case studies
 - Task-oriented communication for edge-assisted inference via information bottleneck (IB)
 - Task-oriented communication for cooperative perception via distributed information bottleneck (DIB)
 - Task-oriented communication for edge video analytics (sequential data)

• Conclusions

Edge inference and task-oriented communication

Edge inference

Challenges of edge inference

HIGH energy of DNN models

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html, May 2019

Challenges of edge inference

A single device is limited in

- onboard computing resources;
- limited perception capability;
- limited energy supply.

Effective communication is critical to

- access external computing power;
- improve perception capability;
- prolong battery time;
- overcome partial observation.

ICC 2023 tutorial -- "Task-oriented and semantic-aware communications"

Solutions for edge inference

Server-based method

High communication loadPrivacy concern

On-device processing

High local computationLimited performance

Device-edge co-inference

Balance communication and local computation

Device-edge co-inference with model partitioning

Three levels of communications

Shannon's information theory

Data-oriented vs. Task-oriented communication

ICC 2023 tutorial -- "Task-oriented and semantic-aware communications"

Example: Multi-camera pedestrian occupancy prediction

Input frame

Data-oriented communication

Task-oriented communication

Low bitrate

High bitrate

Data-oriented communication:

- It allocates many bits to represent the background and ground texture.
- However, these details almost do not influence the performance of the downstream task.

Task-oriented communication:

- It focuses on task-relevant information (e.g., the foot points of pedestrians) and discards the <u>redundancy</u>.
- It substantially reduces the communication overhead and latency.

Task-oriented communication system design

- Design goal: To transmit concise and informative feature with low-complexity encoder for low-latency high-accuracy inference
- Theoretical foundation: source coding theory

Design challenges

- Unknown high-dimensional data distribution
- Intractable task-specific distortion metric
- High computational complexity

Design tools

- End-to-end deep learning
- Variational approximation (to make the objective tractable)
- Neural network architecture optimization

Task-oriented communication for edge inference via information bottleneck

J. Shao, Y. Mao, and **J. Zhang**, "Learning task-oriented communication for edge inference: An information bottleneck approach," *IEEE J. Select. Areas Commun.*, vol. 40, no. 1, pp. 197-211, Jan. 2022.

The information bottleneck (IB) problem

 $P_{X|Y}^{\otimes n}$

- Closely related to **remote source coding**.
- Applications of information bottleneck
 - IB theory for deep learning
 - IB as optimization objective (to improve generalization, robustness)

N. Tishby, F. C. Pereira, and W. Bialek, "The information bottleneck method," Annu. Allerton Conf. Commun. Control Comput., 1999.

 $d(Y^n, \hat{Y}^n) \leq D$

Naftali Tishby

(1952 – August 2021)

Task-oriented communication vs. Information bottleneck

Task-oriented Commun.

Task-oriented communication via the IB principle

- Main design challenges:
 - How to estimate mutual information?
 - How to effectively control communication overhead?
 - How to handle dynamic channel conditions?

Variational Feature Encoding (VFE)

ICC 2023 tutorial -- "Task-oriented and semantic-aware communications"

VFE:Variational approximation

Some details: Approximated closed-form solution

 $p_{\phi}(\hat{z}|x)$ is a factorized Gaussian distribution

 $q(\hat{oldsymbol{z}})$ is a log-uniform distribution

$$D_{KL}(p_{\phi}(\hat{z}|x)\|q(x)) = \sum_{i=1}^n D_{KL}(p_{\phi}(\hat{z}_i|x)\|q(\hat{z}_i))$$

$$egin{aligned} -D_{KL}(p_{\phi}(\hat{z}_i \mid oldsymbol{x}) \| q(\hat{z}_i)) &= rac{1}{2} {\log lpha_i} - \mathbb{E}_{\epsilon \sim \mathcal{N}(1, lpha_i)} \log |\epsilon| + \mathrm{C} \ &pprox k_1 S(k_2 + k_3 \log lpha_i) - 0.5 \logig(1 + lpha_i^{-1}ig) + \mathrm{C} \end{aligned}$$

Empirical results

ICC 2023 tutorial -- "Task-oriented and semantic-aware communications"

Experiment

- **Baselines** (data-oriented communication):
 - DeepJSCC (Joint Source-Channel Coding)
 - Learning-based quantization (w/ ideal channel coding)

Rate-distortion on Tiny ImageNet dataset

Experiment

• VFE method can better distinguish the data from different classes compared with DeepJSCC.

Variable-length Variational Feature Encoding (VL-VFE)

- To adapt to channel states: variable-length coding
- To reduce signaling overhead, the coding scheme should be consecutive and monotonic

(b) Consecutive activation

ICC 2023 tutorial -- "Task-oriented and semantic-aware communications"

Variable-length Variational Feature Encoding (VL-VFE)

ICC 2023 tutorial -- "Task-oriented and semantic-aware communications"

Variable-length Variational Feature Encoding (VL-VFE)

Task-oriented communication for cooperative inference via distributed information bottleneck

J. Shao, Y. Mao, and **J. Zhang**, "Task-oriented communication for multi-device cooperative edge inference," *IEEE Transactions on Wireless Communications*, vol. 11, no. 1, pp. 73-87, Jan. 2023.

New Applications: Cooperative Inference

- Multi-device system.
 - Cooperation among multiple devices with distinct views improves sensing capability.

Multi-camera cooperative inference

• Objective: Design an efficient method that can fully exploit the correlation among multiple features in distributed feature encoding.

Cooperative perception vs. Distributed Information Bottleneck (DIB)

Aguerri, Inaki Estella, and Abdellatif Zaidi. "Distributed variational representation learning." IEEE Trans. Pattern Anal. Machine Intell. 120-138, 2019.

Multi-camera cooperative inference

- Probabilistic modeling with K devices
- Loss functions

Distributed Deterministic Information Bottleneck (DDIB)

DIB objective

* D

$$egin{aligned} \mathcal{L}_{ ext{DIB}}(eta) &:= H(Y \mid U_{1:K}) + eta \sum_{k=1}^{K} [H(Y \mid U_k) + \underbrace{I(Z_k; U_k)}_{ ext{Rate}}] \ \end{aligned}$$
 $egin{aligned} ext{DIB objective} & ext{The minimality is only satisfied in the asymptotic limit} \ \mathcal{L}_{ ext{DDIB}}(eta) &:= H(Y \mid U_{1:K}) + eta \sum_{k=1}^{K} [H(Y \mid U_k) + eta$

Proposed method: Variational DDIB (VDDIB)

• Using variational inference to estimate the intractable (entropy) terms.

$$egin{aligned} \mathcal{L}_{ ext{DDIB}}(eta) &:= H(Y \mid U_{1:K}) + eta \sum_{k=1}^{K} [H(Y \mid U_k) + R_{ ext{bit}}(U_k)] \ &igwedge \$$

Minimizing the VDDIB objective may not result in the optimal raterelevance tradeoff due to the approximations

Introduce a selective retransmission (SR) mechanism to further reduce the communication overhead caused by the redundancy among the extracted features.

- The edge server selectively activates the edge devices to retransmit their encoded features based on the informativeness of the received features.
- The mechanism consists of a stopping policy and an attention module.

Selective Retransmission Mechanism

- Stopping policy
 - Each edge device is allowed to transmit the encoded feature with a maximum number of *T* attempts.
 - Once the received features are sufficient to output a confident result, the remaining retransmission attempts can be saved.

Selective Retransmission Mechanism

Attention Module

• Select the most informative features to retransmit based on the attention scores.

VDDIB with Selective Retransmission Mechanism (VDDIB-SR)

Performance evaluation

Cooperative inference tasks

View 2

Two-view MNIST <u>classification</u>

Twelve-view Shape Recognition on ModelNet40 dataset

Performance evaluation

- The accuracy of the cooperative tasks under different bit constraints.
- Task-oriented vs. Data-oriented
 - MNIST classification task: ~10 bits vs. 1.3 kbits
 - Shape recognition task: ~200 bits vs. 120 KB

M	VIST classif	ication	
		$R_{ m sum}$	
	6 bits	10 bits	14 bits
NN-REG	95.93%	97.49%	97.78%
NN-GBI	96.62%	97.79%	98.02%
eSAFS	96.97%	97.87%	98.05%
CAFS	94.14%	97.43%	97.42%
VDDIB (ours)	97.08%	97.82%	98.06%
VDDIB-SR (T=2) (ours)	97.13%	98.13%	98.22%
Sł	nape Recog	nition	
Sł	nape Recog	nition	
Sł	nape Recog	nition R _{sum} 240 bits	360 bits
Sł NN-REG	120 bits 87.50%	nition R _{sum} 240 bits 88.25%	360 bit: 89.03%
Sł NN-REG NN-GBI*	120 bits 87.50% 88.82%	nition R _{sum} 240 bits 88.25%	360 bits 89.03%
Sł NN-REG NN-GBI* eSAFS	120 bits 87.50% 88.82% 85.88%	nition <u>R_{sum}</u> 240 bits 88.25% — 87.87%	360 bit 89.03% — 89.50%
Sł NN-REG NN-GBI* eSAFS CAFS	120 bits 87.50% 88.82% 85.88% 86.75%	nition <u>R_{sum}</u> 240 bits 88.25% — 87.87% 89.56%	360 bits 89.03% — 89.50% 90.67%

* The GBI quantization algorithm is computationally prohibitive when the number of bits is too large.

90.25%

91.31%

VDDIB-SR (T=2) (ours)

91.62%

Ablation Study

- ✤ Impact of the maximum transmission attempts T.
 - the performance of the VDDIB-SR method improves with T.

ICC 2023 tutorial -- "Task-oriented and semantic-aware communications"

Task-oriented communication for edge video analytics (sequential data)

J. Shao, X. Zhang, and **J. Zhang**, "Task-oriented communication for edge video analytics," submitted to *IEEE Transactions on Wireless Communications*. (<u>https://arxiv.org/abs/2211.14049</u>)

Edge video analytics

• More and more cameras and video data at the edge

• Powerful AI models for visual data

ICC 2023 tutorial -- "Task-oriented and semantic-aware communications"

Sequence data processing at the network edge

- The observations are temporally correlated
 - Example: multi-camera surveillance system
 - Exploit the temporal correlation to reduce the communication overhead

Single-camera tracking

Multi-target multi-camera re-identification

ICC 2023 tutorial -- "Task-oriented and semantic-aware communications"

An example of edge video analytics

- Challenges in edge video analytics:
 - How to effectively exploit the **temporal dependence** among frames.
 - How to effectively leverage the **spatial correlation** among cameras.

Existing methods

- VFE
 - Task-oriented
 - Only for images

- **DVC** (Deep video compression)
 - Efficient in extracting temporal correlation
 - But data-oriented

Proposed method

ICC 2023 tutorial -- "Task-oriented and semantic-aware communications"

Feature extraction

$$egin{aligned} \min_{m{ heta}(1:K)} &- \sum_{t=1}^N Iigg(Y_t, \dots, Y_{t+ au_1}; \hat{Z}_t^{(1:K)}igg) + eta \sum_{t=1}^N \sum_{k=1}^K Higg(\hat{Z}_t^{(k)}igg) \ pigg(y_t, \dots, y_{t+ au_1} | \hat{m{z}}_t^{(1:K)}igg) & pigg(\hat{z}_t^{(k)}igg) \end{aligned}$$

ICC 2023 tutorial -- "Task-oriented and semantic-aware communications"

Feature encoding

Joint inference (spatial-temporal fusion)

• Joint prediction module

Experimental results

• Multi-camera pedestrian occupancy prediction (Wildtrack dataset)

Chavdarova, Tatjana, Pierre Baqué, Stéphane Bouquet, Andrii Maksai, Cijo Jose, Timur Bagautdinov, Louis Lettry, Pascal Fua, Luc Van Gool, and François Fleuret. "Wildtrack: A multi-camera hd
dataset for dense unscripted pedestrian detection." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5030-5039. 2018.

Multi-camera pedestrian occupancy prediction

ICC 2023 tutorial -- "Task-oriented and semantic-aware communications"

Ablation study

Impact of the value of the parameter τ_1

Impact of the value of the parameter τ_2

Ablation study

• Bit allocation of the transmitted features of different methods for the multi-camera pedestrian detection task.

ICC 2023 tutorial -- "Task-oriented and semantic-aware communications"

Conclusions

ICC 2023 tutorial -- "Task-oriented and semantic-aware communications"

Conclusions

- Task-oriented communication
 - Shift from "how to communicate" to "what to communicate"
- Task-oriented communication for edge video analytics
 - Edge-assisted inference via information bottleneck
 - Cooperative perception via distributed information bottleneck
- Powerful tools
 - End-to-end optimization
 - Variational approximation

References

- J. Shao, J. Zhang, "BottleNet++: An end-to-end approach for feature compression in device-edge co-inference systems," IEEE Int. Conf. Commun. (ICC) Workshop 2020, June 2020.
- J. Shao, **J. Zhang**, "Communication-computation trade-off in resource-constrained edge inference," *IEEE Commun. Mag.*, vol. 58, no. 12, pp. 20–26, Dec. 2020.
- J. Shao, H. Zhang, Y. Mao, and **J. Zhang**, "Branchy-GNN: a device-edge co-inference framework for efficient point cloud processing," in Proc. *IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP)*, Toronto, Ontario, Canada, Jun. 2021.
- J. Shao, Y. Mao, J. Zhang, "Learning task-oriented communication for edge inference: An information bottleneck approach," *IEEE J. Select. Areas Commun.*, vol. 40, no. 1, pp. 197-211, Jan. 2022.
- J. Shao, Y. Mao, and **J. Zhang**, "Task-oriented communication for multi-device cooperative edge inference," *IEEE Trans*. Wireless Communications, vol. 11, no. 1, pp. 73-87, Jan. 2023.
- J. Shao, X. Zhang, and **J. Zhang**, "Task-oriented communication for edge video analytics," submitted to IEEE Transactions on Wireless Communications. (<u>https://arxiv.org/abs/2211.14049</u>)

• For more details

https://eejzhang.people.ust.hk/

