
LRC: Dependency-Aware Cache 
Management for Data Analytics Clusters 

Yinghao Yu, Wei Wang, Jun Zhang, and Khaled B. Letaief
IEEE INFOCOM 2017



Outline

 Cache Management for Data Analytics Clusters

 Inefficiency of Existing Cache Polices

 LRC: Dependency-Aware Cache Management

 Evaluations

 Conclusions

2



Memory Caches in Data Analytics Clusters

 Caching input data speeds up tasks by orders of magnitude.

[M. Zaharia, 2012]

 Cache space is limited.
 Efficient cache management is desired.

127 sec / iteration

6 sec / iteration

3



Cache Management: A Classic Problem

Well studied in conventional systems: databases, web
servers, etc.
 Objective: optimize the cache hit ratio

 Maximize the chance of in‐memory data access.
 Cache the data that will likely be reused again.

 Optimal cache replacement
 The MIN policy [L. A. Belady, 1966]

 When the cache is full, evicts the data whose next usage is
the farthest away from now.

 Not implementable: MIN requires the exact sequence of future
data access.

4



Existing Solutions

 Least Recently Used (LRU) policy [R. L. Mattson, 1970]

 Evicts the data block that has not been used for the longest
period.

 Short-term popularity
 Widely employed in prevalent systems, e.g., Spark, Tez and

Alluxio.

 Least Frequently Used (LFU) policy [M. Stonebraker, 1971]

 Evicts the data block that has been used the least times.
 Long-term popularity

 Combining LRU and LFU: ARC, LRFC, K-LRC, etc.
 Summary: “guessing” the future data access patterns

based on historical information (access recency or
frequency).

5



What’s New for Data Analytics Clusters?

 Question: In data analytics systems, is the
future data access completely random and
unpredictable?

 No.

6



Data Access Pattern Revealed in the Application 
Semantics

 Application Semantics
 Data dependency structured as a Directed Acyclic Graph (DAG)

 Available to the cluster scheduler before the job starts
 Data access follows the dependency DAG.

 The future is not totally unpredictable.
7



Outline

 Cache Management for Data Analytics Clusters

 Inefficiency of Existing Cache Polices

 LRC: Dependency-Aware Cache Management

 Evaluations

 Conclusions

8



Inefficiency of Existing Cache Polices

 Existing cache polices (LRU / LFU) are
oblivious to the readily available data
dependency information.

 How bad can the result be?
 Inactive data (no future access) cannot be evicted

timely.
 In our measurement studies, inactive data accounts

for >77% of the cache space for >50% of time.

9



LRU (or LFU) is Unable to Evict Inactive Data Timely.

 Assume a 3-entry cache keeping blocks A, B and C
initially.

 To keep block D, one in-memory block should be evicted.
 Block B becomes inactive after block D is computed but will be

retained in memory by LRU (or LFU).

10



 Inactive data takes up a large portion of the cache 
space
 Memory footprint of 15 SparkBench applications [M. Li, 2015] in a 10‐
node EC2 cluster

Inefficiency of Existing Cache Polices

Median: 77% 

11



A New Cache Policy is Desired

 A new cache policy for data analytics clusters is
highly desired.

 Challenge: How to take use of the data
dependency information (DAGs) to clear the
inactive data efficiently?

12



The MIN Policy Cannot be Implemented, Still

 The MIN policy requires exact future data reference
sequence.
 Unavailable due to parallel processing

 Which one of block A and C is accessed first?

13



Outline

 Cache Management for Data Analytics Clusters

 Inefficiency of Existing Cache Polices

 LRC: Dependency-Aware Cache Management

 Evaluations

 Conclusions

14



LRC: Dependency-Aware Cache Management

 Reference count: defined for each data block as the 
number of downstream tasks depending on it.
 Dynamically changing over time:

 Least Reference Count (LRC) policy: when the cache is 
full, always evict the data with the least reference count.
 Inactive data (w/ zero reference count) is evicted first, e.g.,

block B.
 Easy to implement

1

1

1

2 0

15



Intuition of LRC

 Reference count 
Number of downstream tasks accessing it
Chance to be used in the near future

 Empirical study: reference count is a more accurate 
indicator to predict future data access than recency/frequency.

Caching the data blocks with the largest 
reference count is always better than 
caching the most recently (frequently)
used ones.

16



Implementation in Spark

 Architecture: Shaded boxes highlight our implementation

17



Outline

 Cache Management for Data Analytics Clusters

 Inefficiency of Existing Cache Polices

 LRC: Dependency-Aware Cache Management

 Evaluations

 Conclusions

18



Evaluations

 Metrics
 Cache hit ratio
 Application runtime

 Cluster setup
 20 Amazon EC2 instances. 
 Instance type: m4.large. Dual-core 2.4 GHz Intel Xeon® E5‐2676 v3 
(Haswell) processors and 8 GB memory.

Workloads.
 Typical applications in SparkBench

19



Workload Characterization

 Not all applications benefit from the improvement of
cache management.

20



Evaluation Summary

 Summary: maximum saving of application runtime

21



Cache Hit Ratio - 1

22



Cache Hit Ratio - 2

23



Application Runtime - 1

24



Application Runtime - 2

The advantage of LRC becomes more 
prominent when the cache size decreases.

25



Outline

 Cache Management for Data Analytics Clusters

 Inefficiency of Existing Cache Polices

 LRC: Dependency-Aware Cache Management

 Evaluations

 Conclusions

26



Conclusions

In this work, we have
 Investigated the data access pattern in data analytic

systems with empirical data.
 Motivated the need to leverage the dependency DAGs

to optimize the cache management.
 Designed and implemented LRC, a dependency-aware

cache management policy.
 Speed up typical workloads by up to 60%
 LRC provides greater performance gain when the cache 

contention becomes more intense.

27



Thank you

Questions? 

28


