
LRC: Dependency-Aware Cache 
Management for Data Analytics Clusters 

Yinghao Yu, Wei Wang, Jun Zhang, and Khaled B. Letaief
IEEE INFOCOM 2017



Outline

 Cache Management for Data Analytics Clusters

 Inefficiency of Existing Cache Polices

 LRC: Dependency-Aware Cache Management

 Evaluations

 Conclusions

2



Memory Caches in Data Analytics Clusters

 Caching input data speeds up tasks by orders of magnitude.

[M. Zaharia, 2012]

 Cache space is limited.
 Efficient cache management is desired.

127 sec / iteration

6 sec / iteration

3



Cache Management: A Classic Problem

Well studied in conventional systems: databases, web
servers, etc.
 Objective: optimize the cache hit ratio

 Maximize the chance of in‐memory data access.
 Cache the data that will likely be reused again.

 Optimal cache replacement
 The MIN policy [L. A. Belady, 1966]

 When the cache is full, evicts the data whose next usage is
the farthest away from now.

 Not implementable: MIN requires the exact sequence of future
data access.

4



Existing Solutions

 Least Recently Used (LRU) policy [R. L. Mattson, 1970]

 Evicts the data block that has not been used for the longest
period.

 Short-term popularity
 Widely employed in prevalent systems, e.g., Spark, Tez and

Alluxio.

 Least Frequently Used (LFU) policy [M. Stonebraker, 1971]

 Evicts the data block that has been used the least times.
 Long-term popularity

 Combining LRU and LFU: ARC, LRFC, K-LRC, etc.
 Summary: “guessing” the future data access patterns

based on historical information (access recency or
frequency).

5



What’s New for Data Analytics Clusters?

 Question: In data analytics systems, is the
future data access completely random and
unpredictable?

 No.

6



Data Access Pattern Revealed in the Application 
Semantics

 Application Semantics
 Data dependency structured as a Directed Acyclic Graph (DAG)

 Available to the cluster scheduler before the job starts
 Data access follows the dependency DAG.

 The future is not totally unpredictable.
7



Outline

 Cache Management for Data Analytics Clusters

 Inefficiency of Existing Cache Polices

 LRC: Dependency-Aware Cache Management

 Evaluations

 Conclusions

8



Inefficiency of Existing Cache Polices

 Existing cache polices (LRU / LFU) are
oblivious to the readily available data
dependency information.

 How bad can the result be?
 Inactive data (no future access) cannot be evicted

timely.
 In our measurement studies, inactive data accounts

for >77% of the cache space for >50% of time.

9



LRU (or LFU) is Unable to Evict Inactive Data Timely.

 Assume a 3-entry cache keeping blocks A, B and C
initially.

 To keep block D, one in-memory block should be evicted.
 Block B becomes inactive after block D is computed but will be

retained in memory by LRU (or LFU).

10



 Inactive data takes up a large portion of the cache 
space
 Memory footprint of 15 SparkBench applications [M. Li, 2015] in a 10‐
node EC2 cluster

Inefficiency of Existing Cache Polices

Median: 77% 

11



A New Cache Policy is Desired

 A new cache policy for data analytics clusters is
highly desired.

 Challenge: How to take use of the data
dependency information (DAGs) to clear the
inactive data efficiently?

12



The MIN Policy Cannot be Implemented, Still

 The MIN policy requires exact future data reference
sequence.
 Unavailable due to parallel processing

 Which one of block A and C is accessed first?

13



Outline

 Cache Management for Data Analytics Clusters

 Inefficiency of Existing Cache Polices

 LRC: Dependency-Aware Cache Management

 Evaluations

 Conclusions

14



LRC: Dependency-Aware Cache Management

 Reference count: defined for each data block as the 
number of downstream tasks depending on it.
 Dynamically changing over time:

 Least Reference Count (LRC) policy: when the cache is 
full, always evict the data with the least reference count.
 Inactive data (w/ zero reference count) is evicted first, e.g.,

block B.
 Easy to implement

1

1

1

2 0

15



Intuition of LRC

 Reference count 
Number of downstream tasks accessing it
Chance to be used in the near future

 Empirical study: reference count is a more accurate 
indicator to predict future data access than recency/frequency.

Caching the data blocks with the largest 
reference count is always better than 
caching the most recently (frequently)
used ones.

16



Implementation in Spark

 Architecture: Shaded boxes highlight our implementation

17



Outline

 Cache Management for Data Analytics Clusters

 Inefficiency of Existing Cache Polices

 LRC: Dependency-Aware Cache Management

 Evaluations

 Conclusions

18



Evaluations

 Metrics
 Cache hit ratio
 Application runtime

 Cluster setup
 20 Amazon EC2 instances. 
 Instance type: m4.large. Dual-core 2.4 GHz Intel Xeon® E5‐2676 v3 
(Haswell) processors and 8 GB memory.

Workloads.
 Typical applications in SparkBench

19



Workload Characterization

 Not all applications benefit from the improvement of
cache management.

20



Evaluation Summary

 Summary: maximum saving of application runtime

21



Cache Hit Ratio - 1

22



Cache Hit Ratio - 2

23



Application Runtime - 1

24



Application Runtime - 2

The advantage of LRC becomes more 
prominent when the cache size decreases.

25



Outline

 Cache Management for Data Analytics Clusters

 Inefficiency of Existing Cache Polices

 LRC: Dependency-Aware Cache Management

 Evaluations

 Conclusions

26



Conclusions

In this work, we have
 Investigated the data access pattern in data analytic

systems with empirical data.
 Motivated the need to leverage the dependency DAGs

to optimize the cache management.
 Designed and implemented LRC, a dependency-aware

cache management policy.
 Speed up typical workloads by up to 60%
 LRC provides greater performance gain when the cache 

contention becomes more intense.

27



Thank you

Questions? 

28


