Cloud and Edge Computing for Mobile Intelligence

Jun ZHANG

Jan 4, 2018

Outline

Introduction In-Memory Data Analytics Clusters Mobile Edge Computing Takeaways

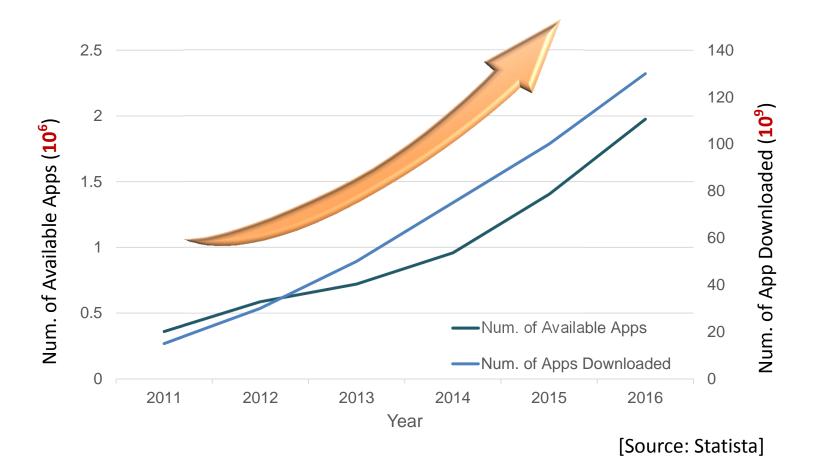
The Tipping Point

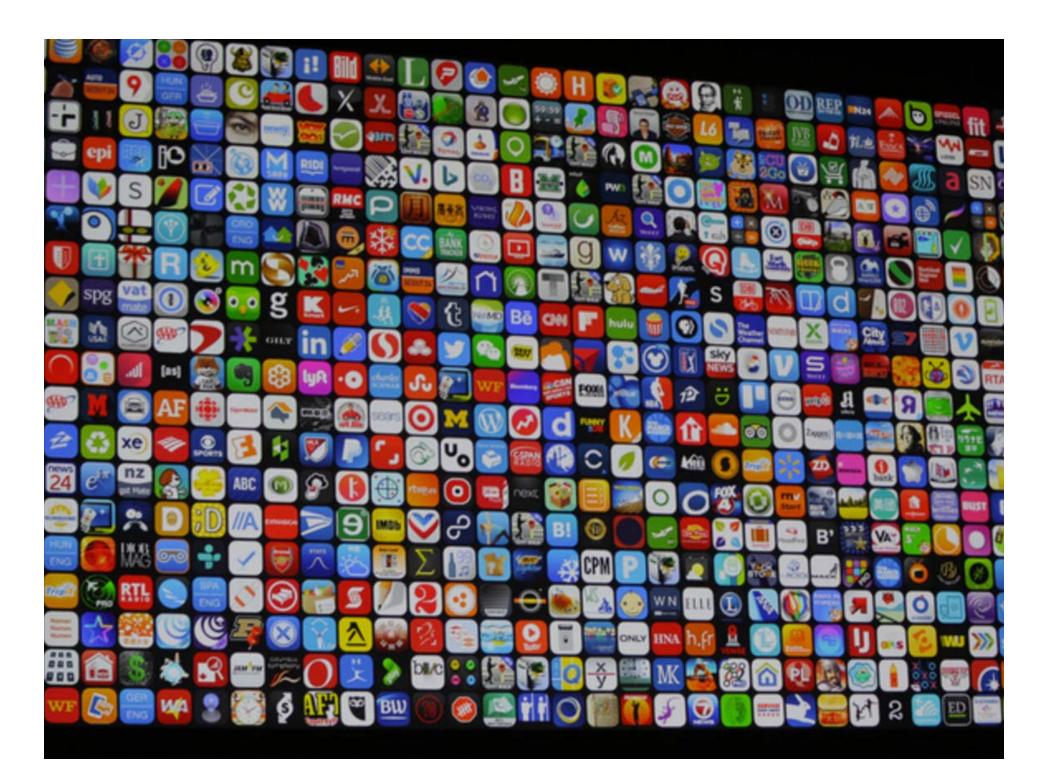
Before

June 29, 2007

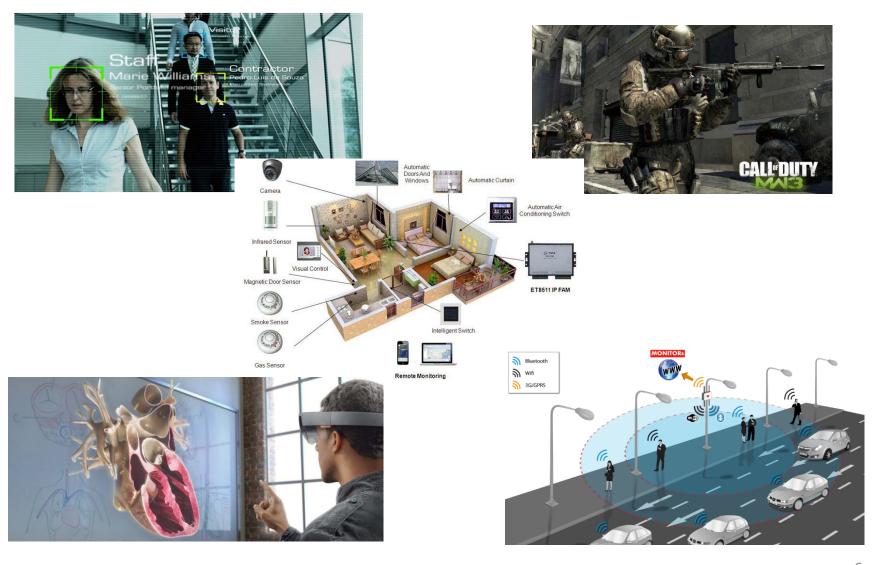
After

Growth of Mobile Application Markets

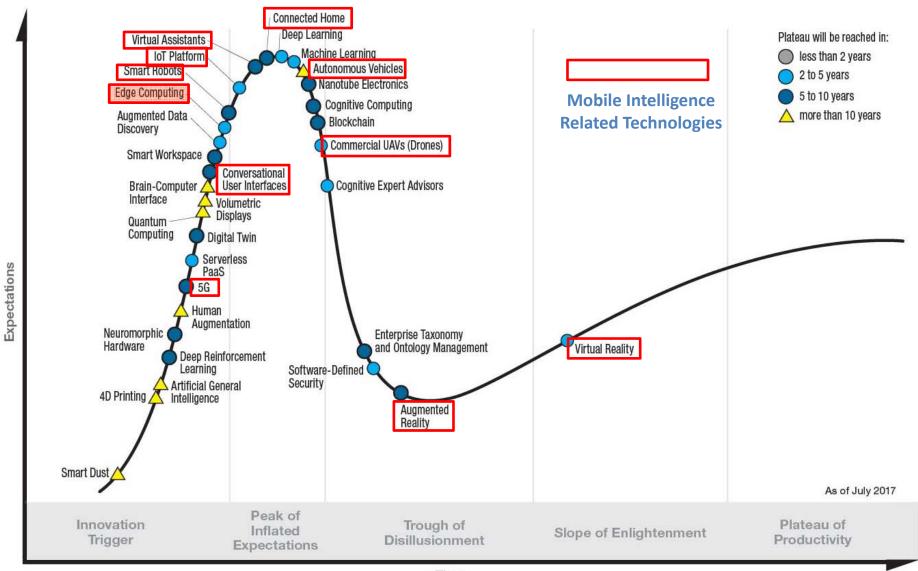




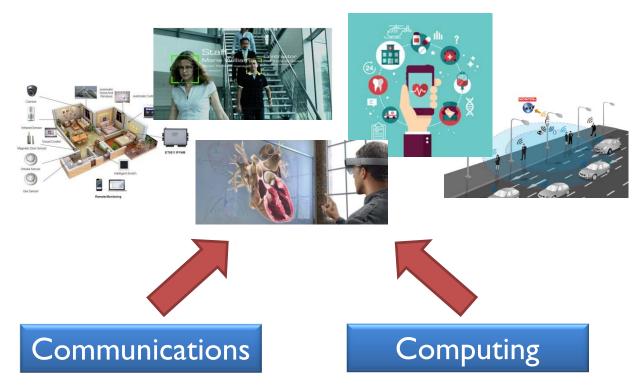
The Era of Mobile Intelligence

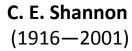


Gartner Hype Cycle for Emerging Technologies, 2017



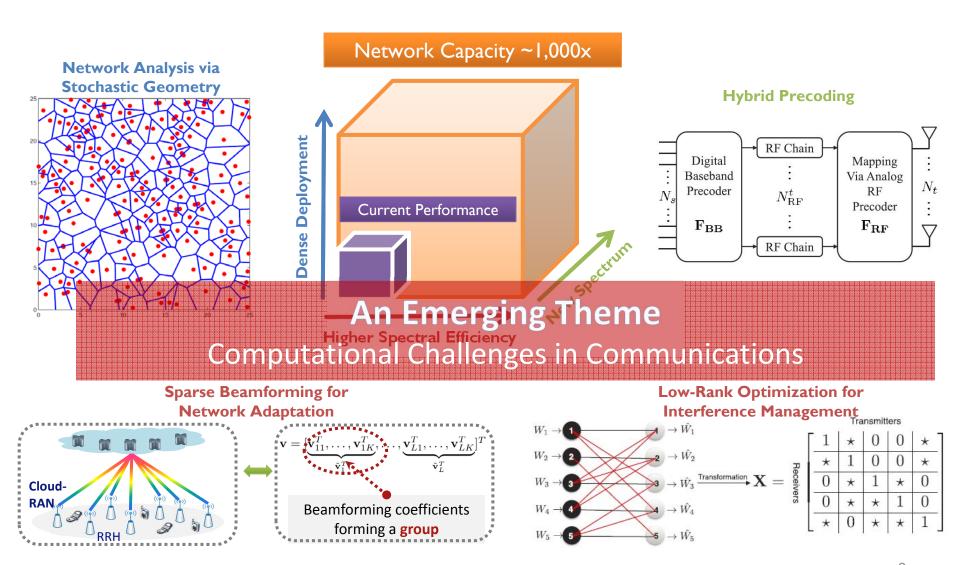
Mobile Intelligence





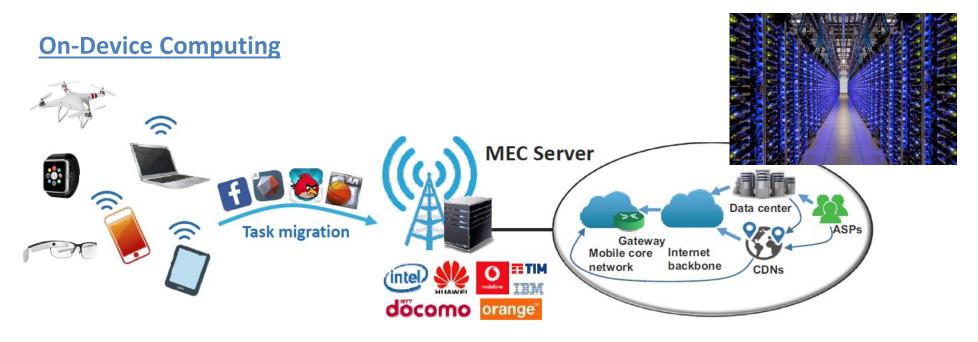
A. Turing (1912—1954)

To Address the Communication Challenge - A 3D Picture



To Address the Computation Challenge – A 3-Layer Picture

Cloud Computing
This Talk
Mobile Edge Computing



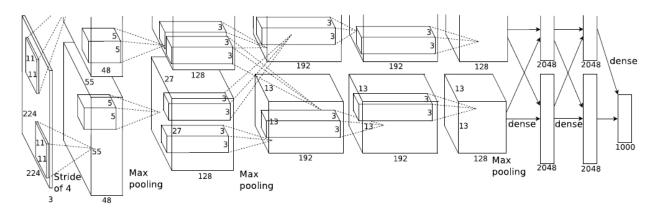
In-Memory Big Data Analytics Clusters

BIG DATA Challenge

Training

- DistBelief (Google) [1]
 - 1 billion connections
 - 1,000 machines for 3 days (16,000 cores)
 - 600 kWatts, \$5,000,000

- Inference (BIG model size)
 - AlexNet Caffemodel > 200MB [2, 3]



^[1] Le, Q, Ranzato, M, el. al. Building high level features using large scale unsupervised learning. ICML 2012.

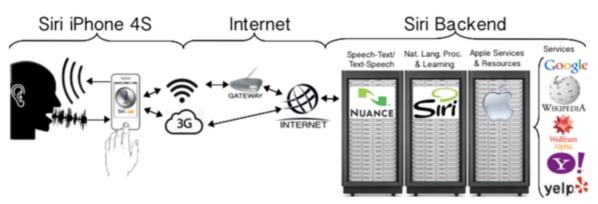
^[2] Krizhevsky, A., Sutskever, I. & Hinton, G. ImageNet classification with deep convolutional neural networks. NIPS 2012.

^[3] Caffe model zoo. URL http://caffe.berkeleyvision.org/model_zoo.

Go to the Cloud

- Mobile devices are limited in
 - Processor speed
 - Memory size
 - Disk capacity
 - Battery life

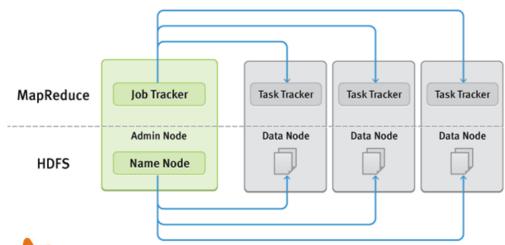
• Solution Example: Siri

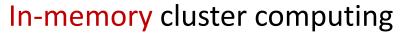


http://www.howtechnologywork.com/how-siri-works/

Big Data Analytics in the Cloud

- Cluster-Computing Frameworks
 - (December 2011) [4]





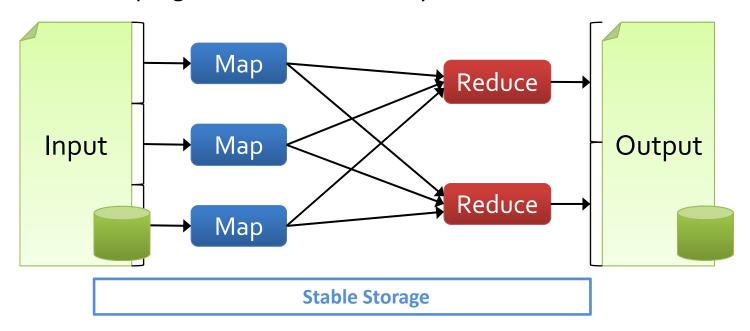
^[4] J. Dean and S. Ghemawat. "MapReduce: Simplified data processing on large clusters." In Proc. The 6th Symposium on Operating Systems Design and Implementation (OSDI), pp.137–150, Dec. 2004.

^[5] M. Zaharia, M. Chowdhury, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing." In NSDI, 2012.

Inefficiency of MapReduce

MapReduce

Write the program state to disk every iteration

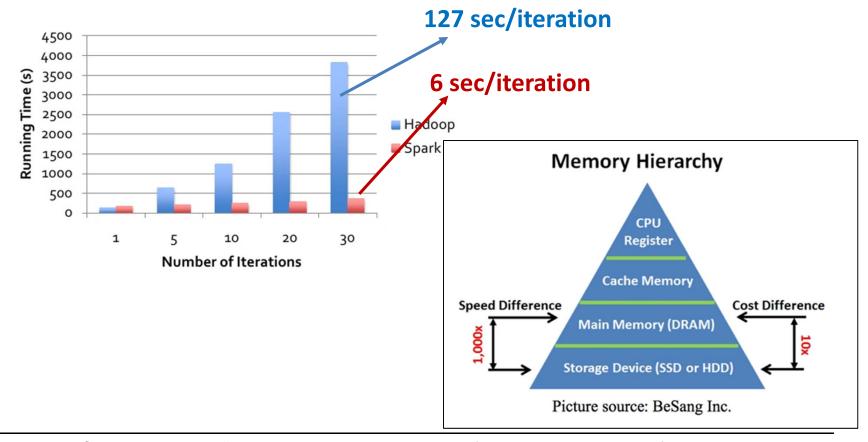


☐ Inefficient for

- Iterative algorithms (machine learning, graphs)
- Interactive data mining

Memory Speeds up Computation

By caching input data in memory, Spark reduces the runtime by 20 times. [5]



[5] M. Zaharia, M. Chowdhury, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing." In NSDI, 2012

In-Memory Processing

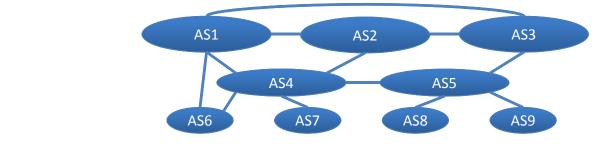
Data analytics clusters are shifting towards in-memory computations

Main Memory

Stable Storage (HDFS, S3, etc.)

Cache Management

- > Crucial for in-memory data analytics systems.
- Well studied in many systems
 - > CDN (Akamai)



Facebook

User

Browser

Edge
Origin
Backend

Cache

Cache

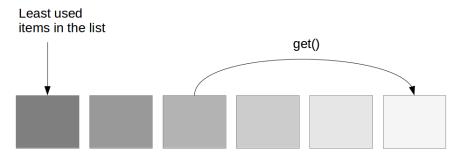
> Objective: optimize the cache hit ratio

Cache

Maximize the chance of in-memory data access.

Existing Solutions

- Least Recently Used (LRU) policy [R. L. Mattson, 1970]
 - Evicts the data block that has not been used for the longest period.
 - Widely employed in prevalent systems, e.g., Spark, Tez and Alluxio.



Calling get() for an item, moves it to the top of the cache

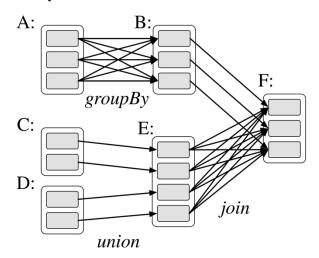
- Least Frequently Used (LFU) policy [M. Stonebraker, 1971]
 - Evicts the data block that has been used the least times.
- Summary: "guessing" the future data access patterns based on historical information (access recency or frequency).

What's New for Data Analytics Clusters?

- Question 1: Is the future data access completely random and unpredictable?
- No!

Data Dependency Reveals Access Patterns

- > Application Semantics
 - Data dependency structured as a Directed Acyclic Graph (DAG)



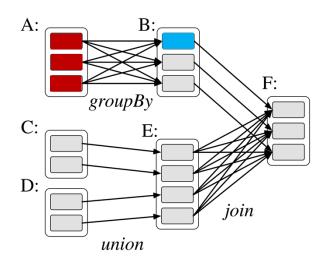
- Available to the cluster scheduler before the job starts
- Data access follows the dependency DAG.
 - The future is not totally unpredictable.

What's New for Data Analytics Clusters?

- Question 2: Is cache hit ratio still a good metric to evaluate the cache performance?
- No

Data Dependency Reveals All-or-Nothing Property

- > All-or-Nothing: a computing task can only be sped up when its dependent data blocks are all cached in memory.
 - ➤ E.g. To compute a block in B, all blocks of A are required. Cache hits of only part of the three blocks makes no difference.



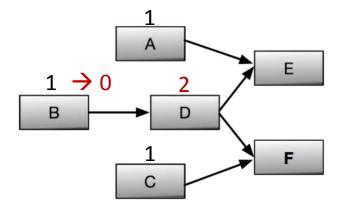
Cache hit ratio is not appropriate metric for cache performance.

Inefficiency of Existing Cache Polices

- Oblivious to the <u>data access pattern</u>:
 - Inactive data (no future access) cannot be evicted timely.
 - In our measurement studies, inactive data accounts for >77% of the cache space for >50% of time.
- Oblivious to the <u>all-or-nothing property</u>:
 - Achieving a high cache hit ratio does not necessarily speed up the computation.
- Challenge: How to exploit the data dependency information (DAGs) to clear the inactive data efficiently and factor in the all-or-nothing property?

LRC: Dependency-Aware Cache Management

- Reference count: defined for each data block as the number of downstream tasks depending on it.
 - Dynamically changing over time:



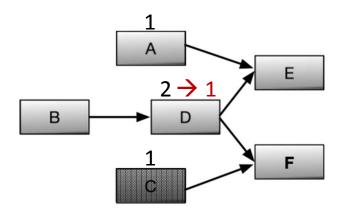
- Least Reference Count (LRC) policy [6]: when the cache is full, always evict the data with the least reference count.
 - Inactive data (w/ zero reference count) is evicted first, e.g., block B.

Effective Cache Hit Ratio

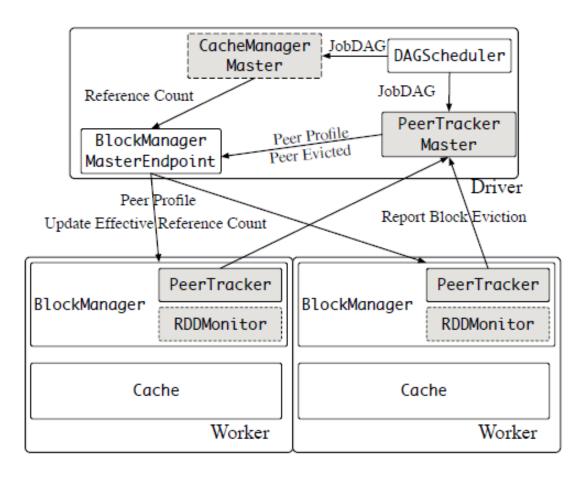
- > Factor in the all-or-nothing property?
- Fifective cache hit ratio: A cache hit is effective when it speeds up the computation, i.e., when all the depended blocks are cached.

Tailor LRC to Optimize Effective Cache Hit Ratio

- ➤ A reference to a data block is only "counted" when it effectively speeds up the computation [7]
 - ➤ E.g., the reference to block D for computation of block F is not counted if block C is evicted from the cache.



Spark Implementation



Evaluations: Workload Characterization

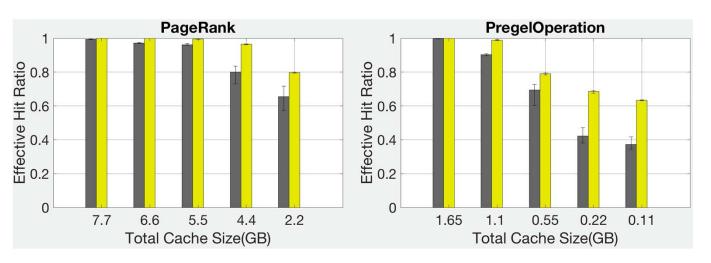
- Cluster setup: 20-node Amazon EC2 cluster.
- Instance type: m4.large. Dual-core 2.4 GHz Intel Xeon® E5-2676 v3 (Haswell) processors and 8 GB memory.
- Workloads: Typical applications from SparkBench [8].

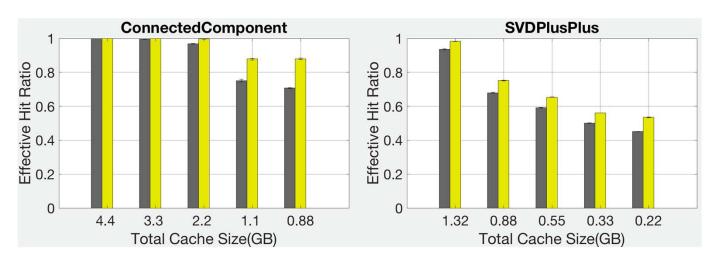
Workload	Cache All	Cache None
Page Rank	56 s	552 s
Connected Component	34 s	72 s
Shortest Paths	36 s	78 s
K-Means	26 s	30 s
Pregel Operation	42 s	156 s
Strongly Connected Component	126 s	216 s
Label Propagation	34 s	37 s
SVD Plus Plus	55 s	120 s
Triangle Count	84 s	99 s
Support Vector Machine (SVM)	72 s	138 s

Not all applications benefit from the improvement of cache management.

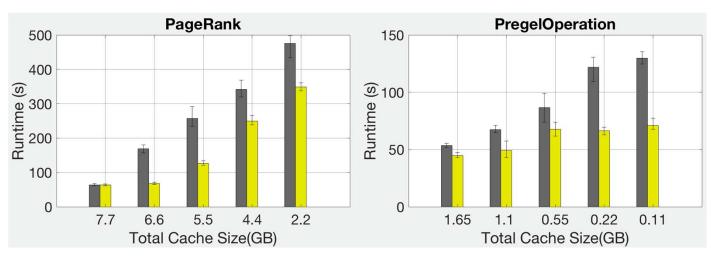
^[8] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, "Sparkbench: a comprehensive benchmarking suite for in memory data analytic platform spark," in Proc. 12th ACM International Conf. on Comput. Frontiers, 2015.

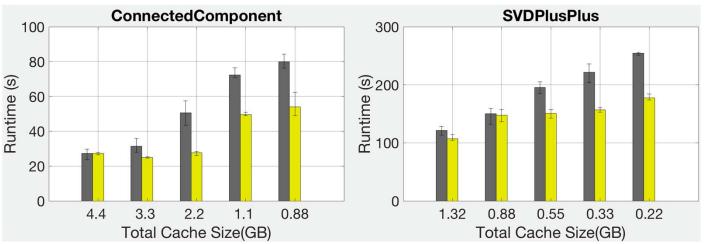
Evaluations: Effective Cache Hit Ratio





Evaluations: Application Runtime





Evaluations: Summary

• LRC speeds up typical workloads by up to 60%.

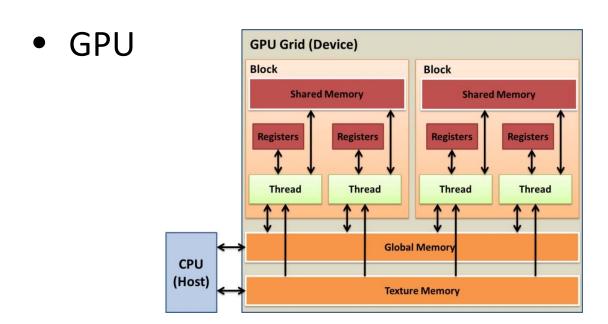
Workload	Cache Size	LRU	LRC	Speedup by LRC
Page Rank	6.6 GB	169.3 s	68.4 s	59.58%
Pregel Operation	0.22 GB	121.9 s	66.3 s	45.64%
Connected Component	2.2 GB	50.6 s	27.6 s	45.47%
SVD Plus Plus	0.88 GB	254.3 s	177.6 s	30.17%

Conclusions

- It is effective to leverage the dependency DAGs to optimize the cache management
- Effective cache hit ratio is a better cache performance metric
 - To account for the all-or-nothing property
- LRC a dependency-aware cache management policy
 - Optimizes the effective cache hit ratio
 - Speeds up typical workloads by up to 60%

Extension: Cache in Distributed Machine Learning Platforms

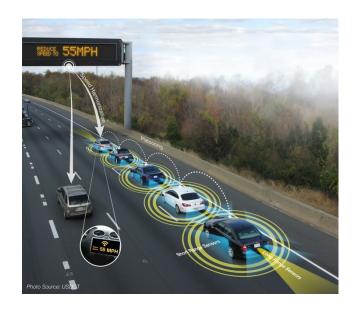
Deep Learning Platforms



Mobile Edge Computing

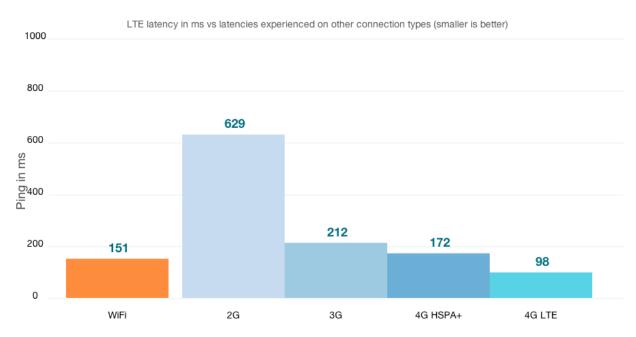
NEED FOR **SPEED**

- VR/AR
 - Latency < 20 ms</p>
 - Avoid cybersickness

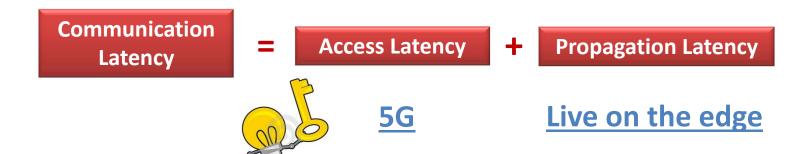


- Autonomous Driving
 - For platooning control
 - Latency < 100 ms</p>

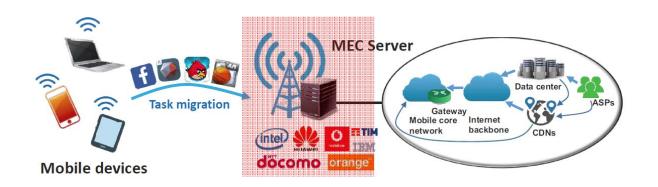
Communication Latency



Open Signal, 2014



Mobile Edge Computing (MEC)



- European Telecommunications Standard Institute (ETSI), 2014
 - MEC "provides IT and cloud-computing capabilities within the Radio Access Network (RAN) in close proximity to mobile subscribers"

Two Representative Problems in MEC

1. Computation Offloading

- Which tasks to offload? When?
- Difficulties: Multipath fading, limited power...

2. Resource Management

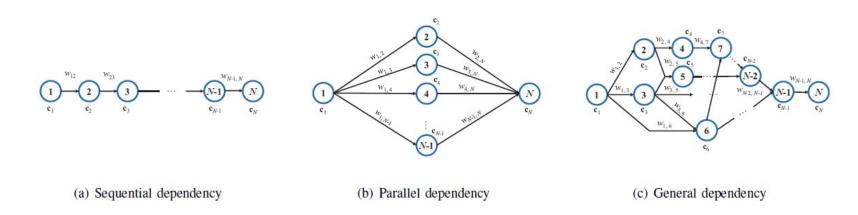
- Radio resource management: power control, channel allocation, etc.
 - Communication for computing
- Computation resource management: job scheduling, dynamic voltage and frequency scaling (DVFS)

Joint radio and computation resource management is needed

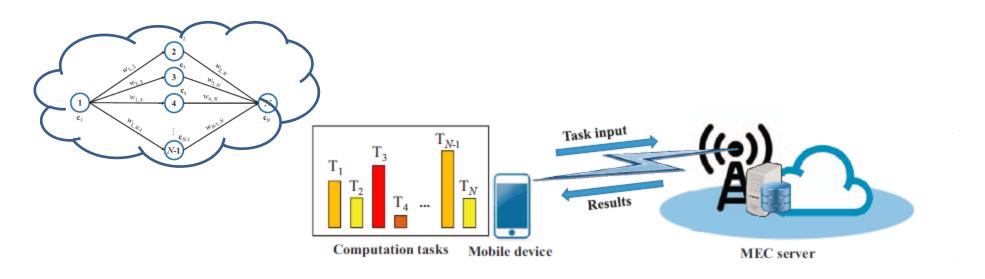
For more research problems:

Offloading Models

- Binary Offloading
 - Task is executed as a whole either locally or remotely
- Data-Partition Model
 - Input bits are bit-wise independent and can be arbitrarily divided into different groups
- Task-Call Graph Model
 - Most general, not well investigated



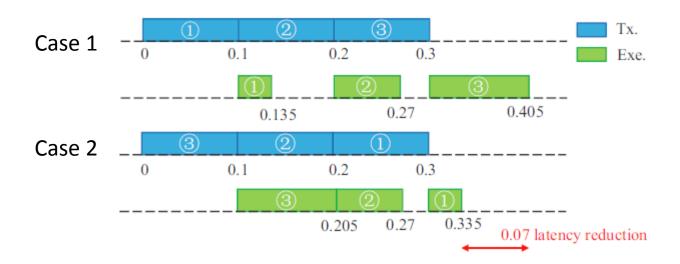
System Model



- Device has scarce computation resource
 - → all tasks are offloaded
- Limited resources
 - A single communication channel
 - A single-core CPU at the edge server (FIFO)

Impact of the Scheduling Order

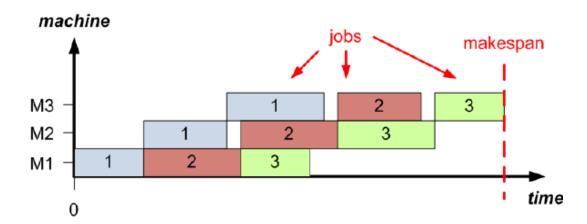
- Different tasks have
 - Different offloading data sizes (Communication latency)
 - Different computation intensities (Computation latency)
- Affected by both communication and computation resources.

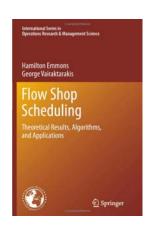


• Problem: How to determine the optimal scheduling order to minimize the overall completion time?

Flow Shop Scheduling

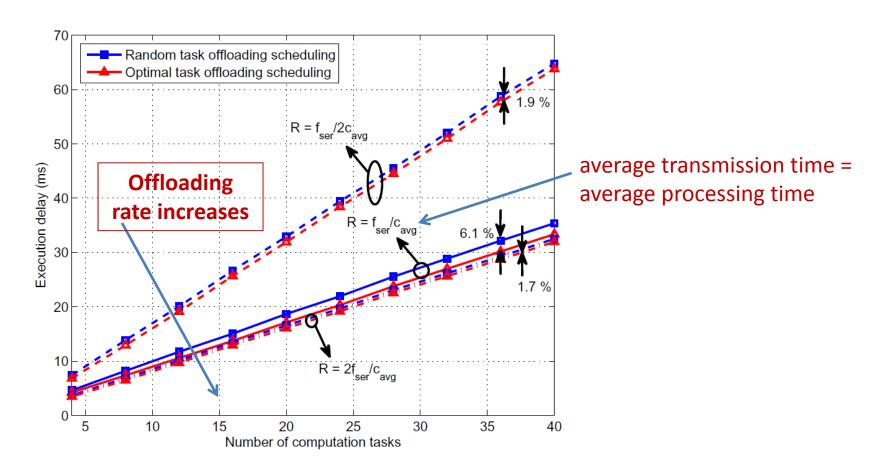
- Large design space: N!
- Not NP-Hard!
 - Offloading time → processing time at machine 1
 - Execution time → processing time at machine 2
- > (Two Machine) Flow Shop Problem





Optimal solution: Johnson's Algorithm

Simulation Results



 Optimal scheduling is more critical when radio resource and computational resource are balanced.

Difficult to Generalize

- Most of extensions of the flow shop scheduling problems are NP-Hard [Garey et al. 1976]
- ✓ Multiple users, 1 edge server (Not NP-Hard)
- ☐ Consider feeding back computation results
 - 3-machine flow shop (NP-Hard)
- ☐ Multiple edge servers
 - Hybrid flow shop model with lags/machine assignment (NP-Hard)
- ☐ Enable mobile execution
 - Offloading decision/order optimization (NP-Hard)

Problem 2: Stochastic Resource Management

Stochastic Models

- Limitations of previous works
 - Assume task offloading and execution within one coherent block
 - However, typically
 - Offloading process ~ tens of milliseconds
 - Channel coherence block ~ a few milliseconds
 - → need to consider **stochastic** channels
 - Assume one task in each slot for each user
 - → need to consider **stochastic** task arrivals
- Stochastic joint radio and computation resource management in multiuser MEC systems [11]
 - Radio resource management: power control and bandwidth allocation

46

Computation resource management: MEC scheduling, DVFS

Problem 2: Stochastic Resource Management

System Model

Multi-user FDMA MEC Systems

- Queuing model
 - Mobile side: $Q_i(t+1) = (Q_i(t) D_{\Sigma,i}(t))^+ + A_i(t)$ Task arrival (bits)
 - Server side: $T_i(t+1) = (T_i(t) D_{s,i}(t))^+ + \min\{(Q_i(t) D_{l,i}(t))^+, D_{r,i}(t)\}$
- Mobile/server CPU speeds, $f_{l,i}(t)/f_{C,m}(t)$
- MEC scheduling decision, $D_{s,i}(t)$
- Transmit power and bandwidth allocation, $\rho_{tx,i}(t)$ and $\alpha_i(t)$

Power-rate function

CSI $\Gamma_i(t)$

Problem Formulation

Average weighted sum power minimization

$$\mathcal{P}_2: \min_{\{\mathbf{X}(t)\}} \lim_{T \to +\infty} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\sum_{i \in \mathcal{N}} w_i \left(p_{\mathrm{tx},i} \left(t \right) + \underline{p_{l,i}} \left(t \right) \right) + w_{N+1} \underline{p_{\mathrm{ser}}} \left(t \right) \right] \right]$$

$$\mathbf{X}(t) \triangleq [\mathbf{f}(t), \mathbf{p}_{\mathrm{tx}}(t), \alpha(t), \mathbf{f}_C(t), \mathbf{D}_s(t)], \qquad \mathbf{Server} \text{ execution power}$$

$$\mathrm{s.t} \quad 0 \leq f_{l,i} \left(t \right) \leq f_{i,\max}, i \in \mathcal{N}, t \in \mathcal{T}$$

$$0 \leq f_{C,m} \left(t \right) \leq f_{C_m,\max}, m \in \mathcal{M}, t \in \mathcal{T}$$

$$0 \leq p_{\mathrm{tx},i} \left(t \right) \leq p_{i,\max}, i \in \mathcal{N}, t \in \mathcal{T}$$

$$\alpha(t) \in \mathcal{A}, t \in \mathcal{T}$$

$$\sum_{i \in \mathcal{N}} D_{s,n} \left(t \right) L_n \leq \sum_{m \in \mathcal{M}} f_{C,m} \left(t \right) \tau, t \in \mathcal{T}$$

$$\sum_{i \in \mathcal{N}} D_{s,n} \left(t \right) L_n \leq \sum_{m \in \mathcal{M}} f_{C,m} \left(t \right) \tau, t \in \mathcal{T}$$

$$\sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} \alpha_i \leq 1 \right\}, \epsilon_A \searrow 0^+$$

$$\sum_{i \in \mathcal{N}} \mathbb{E} \left[|Q_i \left(T \right)| \right]$$

$$\sum_{t \in \mathcal{N}} \mathbb{E} \left[|Q_i \left(T \right)| \right] = 0, i \in \mathcal{N}$$

$$\lim_{t \to +\infty} \frac{\mathbb{E} \left[|T_i \left(T \right)| \right]}{T} = 0, i \in \mathcal{N}$$

$$\lim_{t \to +\infty} \frac{\mathbb{E} \left[|T_i \left(T \right)| \right]}{T} = 0, i \in \mathcal{N}$$

$$\lim_{t \to +\infty} \frac{\mathbb{E} \left[|T_i \left(T \right)| \right]}{T} = 0, i \in \mathcal{N}$$

$$\lim_{t \to +\infty} \frac{\mathbb{E} \left[|T_i \left(T \right)| \right]}{T} = 0, i \in \mathcal{N}$$

A challenging stochastic optimization problem!

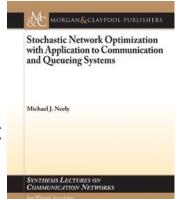
Problem 2: Stochastic Resource Management

Proposed Solution

- Online resource management (Lyapunov optimization)
 - Solve a deterministic optimization problem at each time slot

$$\min_{\mathbf{X}(t)} \quad -\sum_{i \in \mathcal{N}} Q_i\left(t\right) D_{\Sigma,i}\left(t\right) - \sum_{i \in \mathcal{N}} T_i\left(t\right) \left(D_{s,i}\left(t\right) - D_{r,i}\left(t\right)\right) + V \cdot P_{\Sigma}\left(t\right)$$

s.t All constraints in \mathcal{P}_2 except the stability constraints



An UB of the Lyapunov drift-plus-penalty

• The average weighted sum power consumption satisfies

$$\overline{P}_{\Sigma}^{\star} \le P_{\Sigma, \mathcal{P}_2}^{\text{opt}} + \frac{C}{V}$$

Average sum queue length of the task buffer satisfies

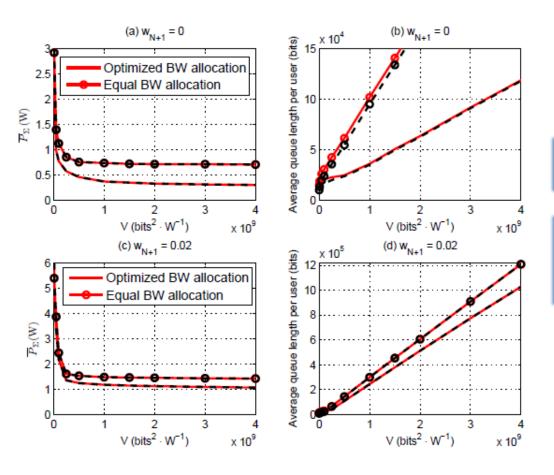
$$\lim_{T \to +\infty} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\sum_{i \in \mathcal{N}} \left(Q_i \left(t \right) + T_i \left(t \right) \right) \right] \leq \frac{C + V \cdot \left(\Psi \left(\epsilon \right) - P_{\Sigma, \mathcal{P}_2}^{\text{opt}} \right)}{\epsilon}$$

Power-delay tradeoff: [O(1/V), O(V)]

Problem 2: Stochastic Resource Management

Simulation Results

Benchmark: Equal bandwidth allocation



Verify the [O(1/V), O(V)] powerdelay tradeoff

Benefits of joint resource management on power and delay performance for MEC

N = 5, $\lambda_i = 4$ kbits/slot

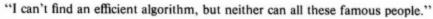
Conclusions

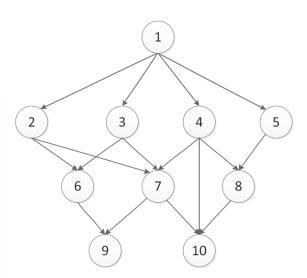
Critical to jointly consider radio and computation resources

- General offloading models are practically important
 - More efforts are needed
- Stochastic models are necessary
 - Efficient online algorithms are needed

Extension: General Task Models (i)

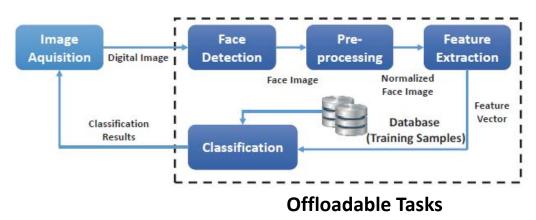
General dependency is Hard!



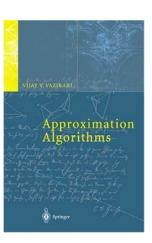


Extension: General Task Models (ii)

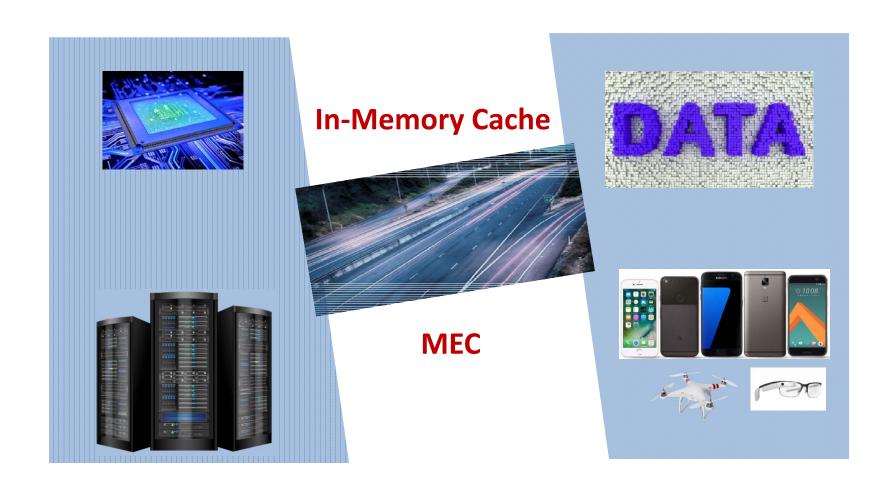
- Option I
 - Approximation algorithms
- Option II
 - Focus on important and interesting cases
 - Example: face recognition



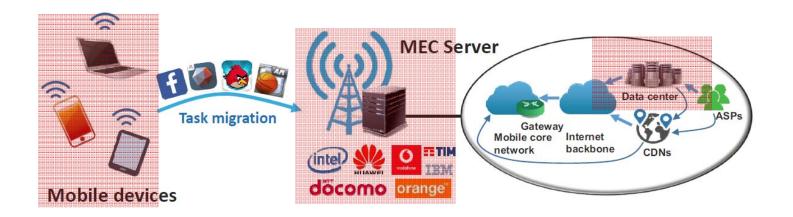
NP-hardness does not prevent developing practically useful algorithms



Overcome Long Distance



Takeaways



- Different computing platforms are needed to support mobile intelligence
 - Cloud + Edge + On-Device
 - A holistic view is needed
- Communication + computing + data + algorithm
 - → mobile intelligence
 - Pay attention to the bottleneck

My Research Interest

- Wireless Communications
 - Dense cooperative networks
 - Network analysis via stochastic geometry
 - Millimeter-wave communications
 - Wireless caching
- Distributed Computing Systems
 - Big data analytics systems
 - Mobile edge computing
- For more information
 - http://www.ece.ust.hk/~eejzhang/

Thank you!