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Growth of Mobile Application Markets
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The Era of Mobile Intelligence
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Gartner Hype Cycle for Emerging Technologies, 2017
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Mobile Intelligence

C. E. Shannon
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To Address the Communication Challenge
— A 3D Picture

Network Capacity ~1,000x
Network Analysis via

Hybrid Precoding
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An Emerging Theme

Computational Challenges in Communications
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To Address the Computation Challenge
— A 3-Layer Picture

On-Device Computing
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In-Memory Big Data Analytics Clusters



BIG DATA Challenge

* Training
— DistBelief (Google) [1]
e 1 billion connections

e 1,000 machines for 3 days (16,000 cores)
* 600 kWatts, $5,000,000

e Inference (BIG model size)
— AlexNet Caffemodel > 200MB [2, 3]
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[1] Le, Q, Ranzato, M, el. al. Building high level features using large scale unsupervised learning. ICML 2012.
[2] Krizhevsky, A., Sutskever, |. & Hinton, G. ImageNet classification with deep convolutional neural networks. NIPS 2012.
[3] Caffe model zoo. URL http://caffe.berkeleyvision.org/model_zoo.



Go to the Cloud

e Mobile devices are limited in
— Processor speed

— Memory size 29
: : \
— Disk capacity \f\/
— Battery life
: P 00
e Solution Example: Siri W,
Siri iPhone 4S Internet Siri Backend
' e ~ o ~ Sorvices

Sefvices

Speach-Text' Mal Lang Prec ﬁmﬂhw

Te 1S.p-un:h £ Leaming fﬂ_‘.u :J'lx'
5.2 ]
'-'-“' o - ‘IEIPE |.ill.
@ //JINTERNET ' # i
!
Lyelpas

http://www.howtechnologywork.com/how-siri-works/
13




Big Data Analytics in the Cloud

* Cluster-Computing Frameworks

_ , (December 2011) [4]
-

Map Reduce Job Tracker Task Tracker Task Tracker Task Tracker
Admin Node - Data Node - Data Node - Data Node |
HDFS Name Node | I | —|

==

— Spor‘lzz (May 2014) [5]
In-memory cluster computing

[4] J. Dean and S. Ghemawat. “MapReduce: Simplified data processing on large clusters.” In Proc. The 6th Symposium on Operating
Systems Design and Implementation (OSDI), pp.137-150, Dec. 2004.

[5] M. Zaharia, M. Chowdhury, et al. “Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.” In
NSDI, 2012. 14



Inefficiency of MapReduce

e MapReduce

— Write the program state to disk every iteration

* Reduce

Reduce

Stable Storage

 Inefficient for
lterative algorithms (machine learning, graphs)

Interactive data mining

15



Memory Speeds up Computation

» By caching input data in memory, Spark reduces the runtime

by 20 times. [5]
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[5] M. Zaharia, M. Chowdhury, et al. “Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing.” In NSDI, 2012
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In-Memory Processing

Data analytics clusters are shifting towards in-memory
computations

Sp Qr K TensorFIow

TEZ® SARTII

=y A
Main Memory

Stable Storage (HDFS, S3, etc.)
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Cache Management

» Crucial for in-memory data analytics systems.

» Well studied in many systems
» CDN (Akamai)

> Facebook

e TS B e

» Obijective: optimize the cache hit ratio

» Maximize the chance of in-memory data access.

18



Existing Solutions

» Least Recently Used (LRU) policy [r. L. Mattson, 1970]
» Evicts the data block that has not been used for the longest period.
» Widely employed in prevalent systems, e.g., Spark, Tez and Alluxio.

Least used
items in the list

get()

T

Calling get() for an item, moves it to the top of the cache

» Least Frequently Used (LFU) policy (. stonebraker, 19711

» Evicts the data block that has been used the least times.

» Summary: “guessing” the future data access patterns based
on historical information (access recency or frequency).

19



What’s New for Data Analytics Clusters?

 Question 1: Is the future data access completely
random and unpredictable?

e No!



Data Dependency Reveals Access Patterns

» Application Semantics
» Data dependency structured as a Directed Acyclic Graph (DAG)

» Available to the cluster scheduler before the job starts

» Data access follows the dependency DAG.
» The future is not totally unpredictable.

21



What’s New for Data Analytics Clusters?

 Question 2: Is cache hit ratio still a good metric to
evaluate the cache performance?

* No



Data Dependency Reveals All-or-Nothing
Property

» All-or-Nothing: a computing task can only be sped up when
its dependent data blocks are all cached in memory.

» E.g. To compute a block in B, all blocks of A are required. Cache hits of
only part of the three blocks makes no difference.

» Cache hit ratio is not appropriate metric for cache performance.

23



Inefficiency of Existing Cache Polices

Oblivious to the data access pattern:
— Inactive data (no future access) cannot be evicted timely.

— In our measurement studies, inactive data accounts for >77% of the
cache space for >50% of time.

Oblivious to the all-or-nothing property:

— Achieving a high cache hit ratio does not necessarily speed up the
computation.

Challenge: How to exploit the data dependency information (DAGs) to
clear the inactive data efficiently and factor in the all-or-nothing
property?



LRC: Dependency-Aware Cache Management

> Reference count: defined for each data block as the number
of downstream tasks depending on it.

» Dynamically changing over time:

1
A\E
150 2/’
B —»| D
1 \F
C/

> Least Reference Count (LRC) policy [6]: when the cache is full,
always evict the data with the least reference count.

> Inactive data (w/ zero reference count) is evicted first, e.g., block B.

[6] V. Yu, W. Wang, J. Zhang, and K. B. Letaief, "LRC: Dependency-aware cache management in data analytics clusters," in Proc. IEEE
INFOCOM 2017, Atlanta, GA, May 2017.
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Effective Cache Hit Ratio

» Factor in the all-or-nothing property?

» Effective cache hit ratio: A cache hit is effective when it
speeds up the computation, i.e., when all the depended blocks
are cached.



Tailor LRC to Optimize Effective Cache Hit Ratio

» A reference to a data block is only “counted” when it
effectively speeds up the computation [7]

» E.g., the reference to block D for computation of block F is not counted
if block Cis evicted from the cache.

[7] Y. Yu, W. Wang, J. Zhang, and K. B. Letaief, "LERC: Coordinated cache management for data-parallel systems," accepted

by IEEE Globecom, Singapore, Dec. 2017.
27



Spark Implementation

Master

BlockManager
MasterEndpoint

CacheManager | TobDAG|
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Evaluations: Workload Characterization

e Cluster setup: 20-node Amazon EC2 cluster.

* Instance type: m4.large. Dual-core 2.4 GHz Intel Xeon® E5-2676 v3

(Haswell) processors and 8 GB memory.
 Workloads: Typical applications from SparkBench [8].

Workload Cache All Cache None
56 s 552 s
34 s 72 s
Shortest a 36 s 78 s
K-Mean 26 s 30 s
| 425 156 s
Strongly Connected Component | 126 s 216 s
34 s 37 s
| 555 120 s
riangle Count 84 s 99 s
Support Vector Machine (SVM) | 72 s 138 s

Not all applications
benefit from the
improvement of cache
management.

[8] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench: a comprehensive benchmarking suite for in memory data analytic
platform spark,” in Proc. 12th ACM International Conf. on Comput. Frontiers, 2015.
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Evaluations: Effective Cache Hit Ratio

PageRank
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Evaluations: Application Runtime
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Evaluations: Summary

 LRC speeds up typical workloads by up to 60%.

Workload Cache Size LRU LRC Speedup by LRC
Page Rank 6.6 GB 169.3 s 68.4 s 59.58%
Pregel Operation 0.22 GB 1219 s 66.3 s 45.64%
Connected Component 2.2 GB 50.6 s 27.6 s 45.47%
SVD Plus Plus 0.88 GB 2543 s | 177.6s 30.17%

32



Conclusions

e |tis effective to leverage the dependency DAGs to
optimize the cache management

e Effective cache hit ratio is a better cache
performance metric

— To account for the all-or-nothing property
 LRC - a dependency-aware cache management
policy

— Optimizes the effective cache hit ratio
— Speeds up typical workloads by up to 60%



Extension: Cache in Distributed Machine
Learning Platforms

e Deep Learning Platforms

theano _ ¥ | %och Caffe

TensorFlow

e GP U GPU Grid (Device)

==

Thread ‘

CPU
(Host)




Mobile Edge Computing



NEED ror SPEED

 VR/AR
— Latency < 20 ms
— Avoid cybersickness

* Autonomous Driving
— For platooning control
— Latency < 100 ms

36



Communication Latency

LTE latency in ms vs latencies experienced on other connection types (smaller is better)
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5G Live on the edge
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Mobile Edge Computing (MEC)

Mobile devices

European Telecommunications Standard Institute (ETSI), 2014

— MEC “provides IT and cloud-computing capabilities within the Radio Access
Network (RAN) in close proximity to mobile subscribers”

Ultra-low
latency Mobile energy

Privacy/Security
enhancement

38



Two Representative Problems in MEC

1. Computation Offloading
— Which tasks to offload? When?
— Difficulties: Multipath fading, limited power...

2. Resource Management
— Radio resource management: power control, channel allocation, etc.
e Communication for computing

— Computation resource management: job scheduling, dynamic voltage
and frequency scaling (DVFS)

Joint radio and computation resource

management is needed

i
=

For more research problems:

[9] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey for mobile edge computing: The communication perspective,”

IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, 4th Quart. 2017. 39



Problem 1: Task Offloading Scheduling

Offloading Models

e Binary Offloading
— Task is executed as a whole either locally or remotely

e Data-Partition Model

— Input bits are bit-wise independent and can be arbitrarily divided into
different groups

e Task-Call Graph Model

— Most general, not well investigated

Wia Wy Wy
€ €3 Cy Cy

€ 1

(a) Sequential dependency (b) Parallel dependency (c) General dependency

40



Problem 1: Task Offloading Scheduling

System Model

. To Task input —— {
T|. . o ____} Y
T, Ty |lm e
|:| D I T, .- |:| . Results
. L

Computation tasks  Mobile device MEC server

 Device has scarce computation resource
— all tasks are offloaded
e Limited resources

— A single communication channel
— A ssingle-core CPU at the edge server (FIFO)

41



Problem 1: Task Offloading Scheduling

Impact of the Scheduling Order

e Different tasks have
— Different offloading data sizes (Communication latency)

— Different computation intensities (Computation latency)

e Affected by both communication and computation resources.

Casel - O @ Ol iy
] 0.1 02 0.3 B Exc
_________ 0. ]_1_: o f}_f? - f}.—H}E o
Case 2 _ &) @ O .
0 0.1 02 0.3
_________ 0205 027 0335 |
0.07 latency reduction
B S

* Problem: How to determine the optimal scheduling order to minimize the
overall completion time?

42



Problem 1: Task Offloading Scheduling

Flow Shop Scheduling

e Large design space: N!

e Not NP-Hard!

— Offloading time = processing time at machine 1
— Execution time = processing time at machine 2

» (Two Machine) Flow Shop Problem

machine
A Jobs makespan
s \ |
M3 — 3
M2 — 3
| -
' time

0
e Optimal solution: Johnson's Algorithm

low Shop
Scheduling

ﬁf}
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Problem 1: Task Offloading Scheduling
Simulation Results

TO T T T T T T T
—il— Random task offloading scheduling| : :
—&— Optimal task offloading scheduling | : : : 2
60_ ............. ............. ............. ............
R=f_/2c
50_ ....................................................................
% | a — | . | | _ average transmission time =
£ || Offloading : : 5 5 .
T A0 ; : average processing time
E . . . .
S
“8‘ 30_ .....................................
[0}
=
L
20 b
e R T
0 | | | |
5 10 15 20 25 30 35 40

Number of computation tasks

e Optimal scheduling is more critical when radio resource and
computational resource are balanced.

[10] Y. Mao, J. Zhang, and K. B. Letaief, "Joint task offloading scheduling and transmit power allocation for mobile-edge computing
systems," in Proc. IEEE Wireless Commun. Networking Conf. (WCNC), San Francisco, CA, Mar. 2017. 44



Problem 1: Task Offloading Scheduling
Difficult to Generalize

 Most of extensions of the flow shop scheduling problems are
NP-Hard [Garey et al. 1976]

v' Multiple users, 1 edge server (Not NP-Hard)
[ Consider feeding back computation results
— 3-machine flow shop (NP-Hard)
 Multiple edge servers
— Hybrid flow shop model with lags/machine assignment (NP-Hard)
1 Enable mobile execution
— Offloading decision/order optimization (NP-Hard)



Problem 2: Stochastic Resource Management

Stochastic Models

e Limitations of previous works
— Assume task offloading and execution within one coherent block
— However, typically

» Offloading process ~ tens of milliseconds
e Channel coherence block ~ a few milliseconds

- need to consider stochastic channels
— Assume one task in each slot for each user
- need to consider stochastic task arrivals

e Stochastic joint radio and computation resource management in
multiuser MEC systems [11]

— Radio resource management: power control and bandwidth allocation
— Computation resource management: MEC scheduling, DVFS

[11] Y. Mao, J. Zhang, S.H. Song, and K. B. Letaief, "Stochastic joint radio and computational resource management for multi-user
mobile-edge computing systems," IEEE Trans. Wireless Commun., vol. 16, no. 9, pp. 5994-6009, Sept. 2017.



Problem 2: Stochastic Resource Management

System Model

e Multi-user FDMA MEC Systems

(¢

(+1))
" “‘ MIS‘\——b\D
MEC server
il |

“ 0.1
MD, |_| ‘ MD,

040 " mp,

il

Task bufters

T (1)..... T,(1)

— Queuing model
= Mobile side: Qi (t+1) = (Qi (t) — Dx i ()" + A; (1) Task arrival (bits)
= Serverside: T; (t + 1) = (T; (t) — Do, (£))" 4+ min{(Q; (t) — Dy; (t)
— Mobile/server CPU speeds, f; (t)/f¢ (t)
— MEC scheduling decision,
— Transmit power and bandwidth allocation, and
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Problem 2: Stochastic Resource Management

Problem Formulation

e Average weighted sum power minimization

Po: min  lim Y 1) Y wW; (ptx i (t) + P1i (1)) + WN+1Pser (t)]

X()} T+o0 T =0 Lien / \
X (1) 2 [£ (1) . pee (). (£) . £ (1), D, ()], Local execution Server execution
power power

s.t ngl,z' (t) Sf’é,max;iENvtET

CPU speed constraints
0 § fC‘,m (t) E fC’m,maxam S Mat S T

0 < Pix.i (1) < Pimax,t EN,tET Tx power and bandwidth allocation
a(t)e A,teT constraints

— L > . < +
ZDS” t) Ln < Z fem (O)T,0€T A {a‘@’“—e“"zieNm—l}’GA\O
teN meEM Server scheduling constraints

Dyi(t)>0,ieN,teT
i Qi (1) ] _0ieN

T—+o0 T bil
Mean rate stability
E |75 (T ,
lim [T ( )”:O,zEN
T—+4o00 T

[ A challenging stochastic optimization problem! ]48




Problem 2: Stochastic Resource Management

Proposed Solution

Stochastic Network Optimization
with Application to Communication
and Queueing Systems

 Online resource management (Lyapunov optimization)
— Solve a deterministic optimization problem at each time slot
mll’l ZQ’L DZz )_ ZTZ (t) (Ds,z' (t)_Dr,i (t))+VPE (t)
1eEN 1eN
s.t  All constraints in Py except the stability constraints

Michael ). Neely

 The average weighted sum power consumption satisfies

C
Ps <P"pt —
) +V

* Average sum gueue length of the task buffer satisfies

C+V- U (e) — Pe¥p,
TkzlooTZE[Z 0+1; (1) ( )

€
t=0 ieEN

[ Power-delay tradeoff: [O(1/V), O(V)] ]
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Problem 2: Stochastic Resource Management

Simulation Results

e Benchmark: Equal bandwidth allocation

@w,,,=0 x10* byw,,,=0

% T T

25 m O ptimized BW allocation | |

Fe (W)

Average queue length per user (bits)

0 1 2 3 4 0 1 2 3 4
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c)w,,, =002 10° (d)w,,, =002
6
— Optimized BW allocation
N —e— Equal BW allocation |

Average queue length per user (bits)

0 1 2 3 4
v (bits? - W) x10° W (bits? - W) x 10°

0 1 2 3 4

N =5, 4, = 4 kbits/slot



Conclusions

e Critical to jointly consider radio and computation
resources

 General offloading models are practically important

— More efforts are needed

e Stochastic models are necessary

— Efficient online algorithms are needed

51



Extension: General Task Models (i)
 General dependency is Hard!

MOLLL L1

*I can’t find an efficient algorithm, but neither can all these famous people.”

52



Extension: General Task Models (ii

Option |

— Approximation algorithms

Approximation

Algorithms

Option Il

— Focus on important and interesting cases

— Example: face recognition

Image Face Feature
LTI {1 Digital Image | Detection processing Extraction

Face Image Normalized
Face Image

Feature
Vector

¥ S Database

Classification

Results Training Samples
¥ Classification B ': : i
|

Offloadable Tasks

NP-hardness does not prevent developing practically useful algorithms
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Overcome Long Distance

1 In-Memory Cache
“H!!ﬁl!l!ﬂ”’ =

il
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Takeaways

MEC Server

Different computing platforms are needed to support mobile
intelligence

— Cloud + Edge + On-Device

— A holistic view is needed

Communication + computing + data + algorithm
- mobile intelligence
— Pay attention to the bottleneck
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My Research Interest

Wireless Communications
— Dense cooperative networks
— Network analysis via stochastic geometry
— Millimeter-wave communications

— Wireless caching

Distributed Computing Systems
— Big data analytics systems
— Mobile edge computing

For more information
— http://www.ece.ust.hk/~eejzhang/
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