
Resource Management for Mobile Edge Computing (MEC)

Jun ZHANG Email: <u>eejzhang@ust.hk</u>

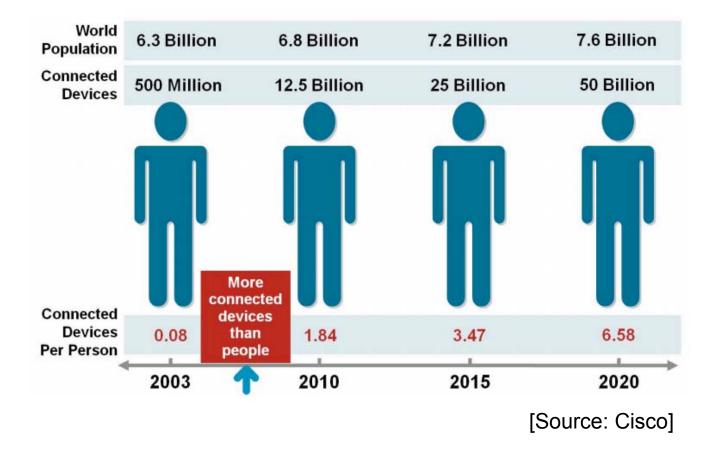
Collaborators

Yuyi Mao (PhD), Yinghao Yu (PhD), Juan Liu (Postdoc) Khaled B. Letaief

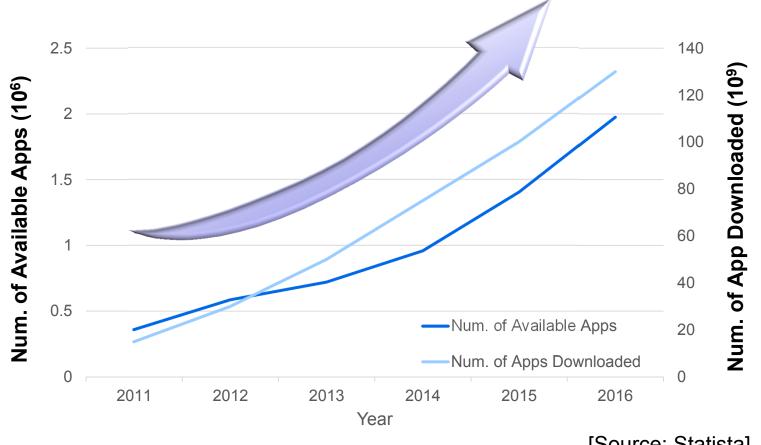
Outline

Introduction

Resource Management for MEC


- Two-timescale computation offloading
- MEC meets energy harvesting
- ✤ Joint communication and computational resource management
- Stochastic resource management for MEC

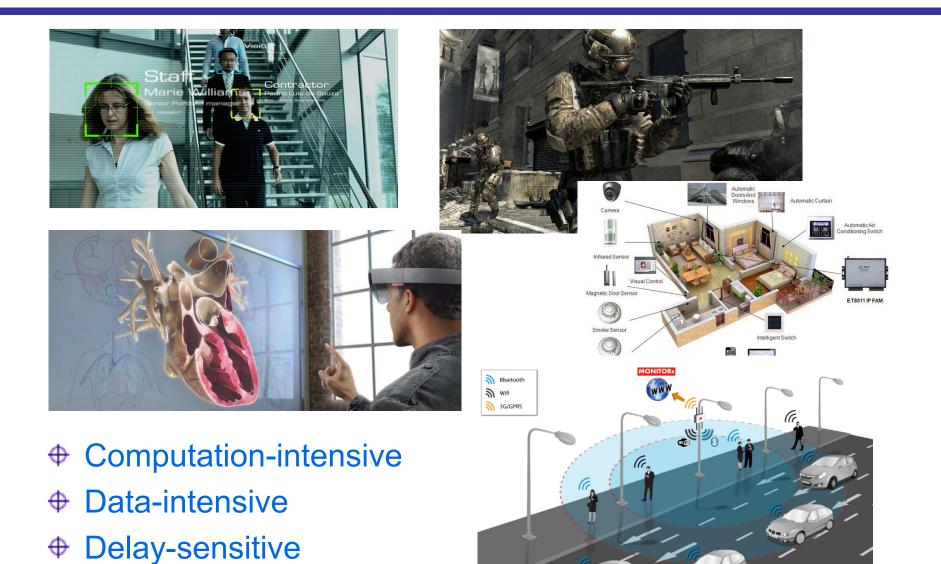
Key Takeaways

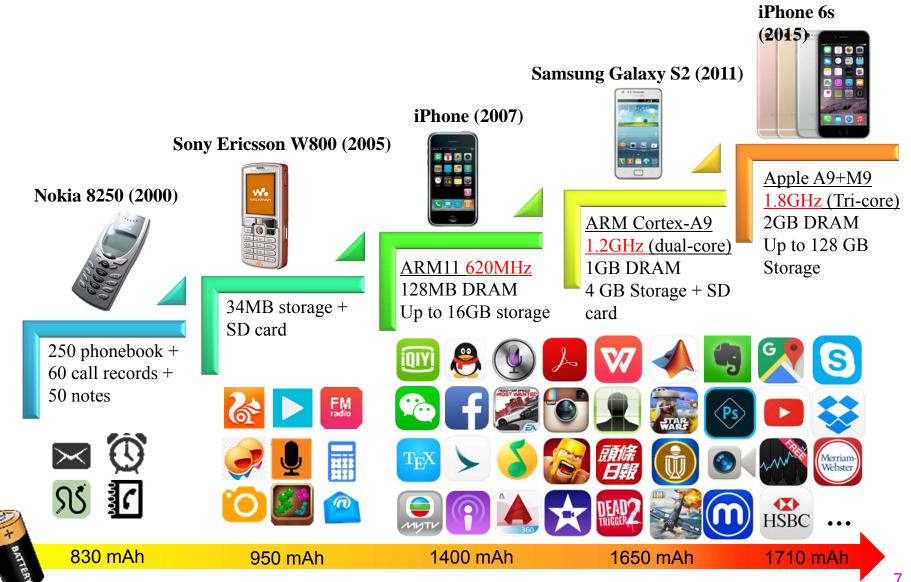

A Survey on MEC

- Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, "A survey for mobile edge computing: The communication perspective," submitted to *IEEE Commun. Surveys Tuts.*, under revision.
- Available: <u>https://arxiv.org/pdf/1701.01090.pdf</u>
- My other research interests
 - Dense Cooperative Networks
 - Wireless Caching
 - Cloud Computing
 - * Big Data Analytics
- For more information
 - http://www.ece.ust.hk/~eejzhang/

Era of Massive Connectivity

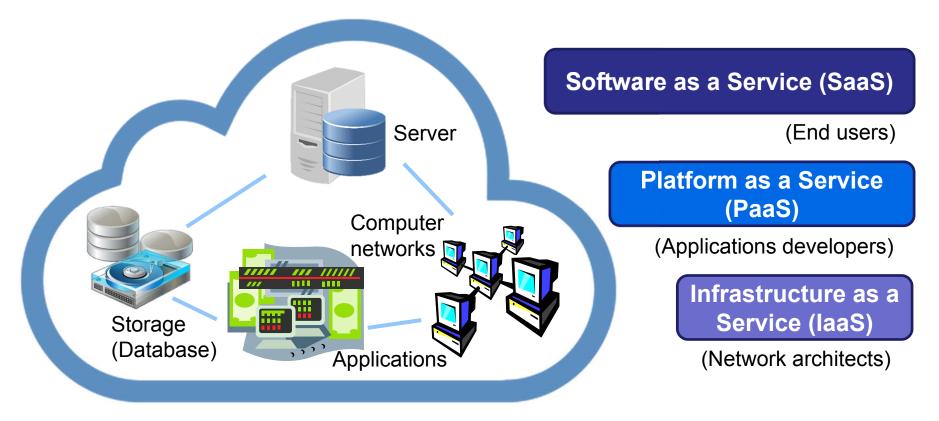
Growth of Mobile Applications Markets


[Source: Statista]

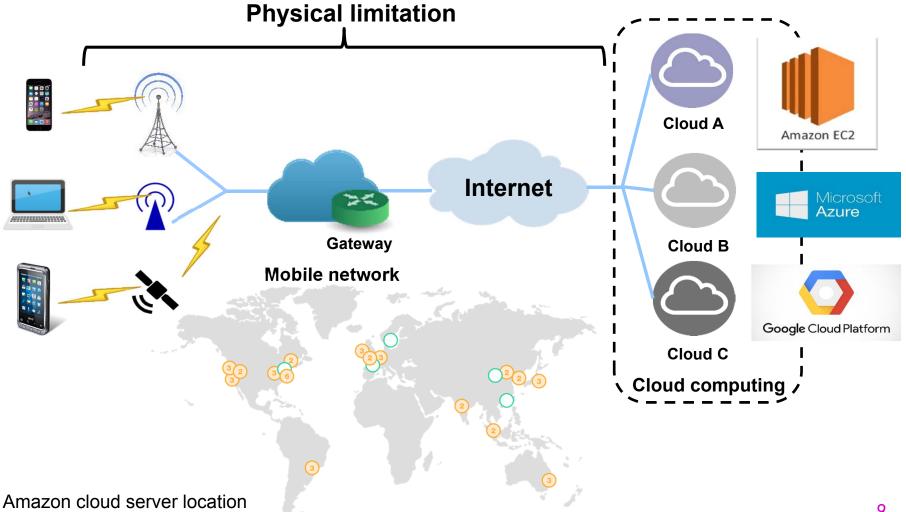

Download on the

App Store

Emerging Applications

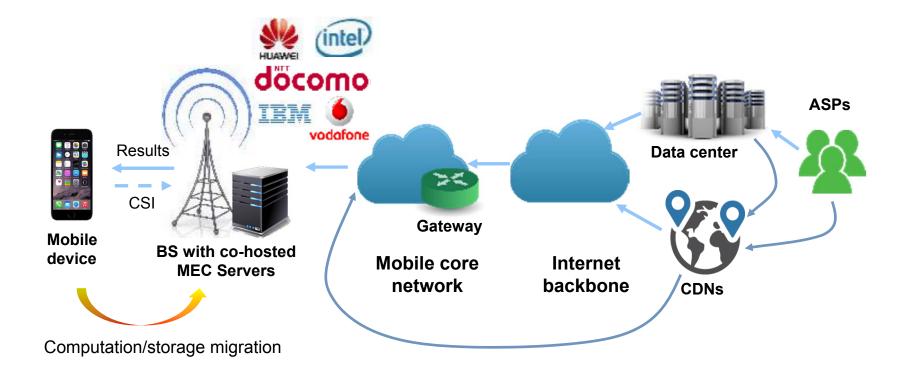

Evolution of Mobile Phones – A Mismatch

Old Paradigm for Mobile Computing (I)


Cloud computing

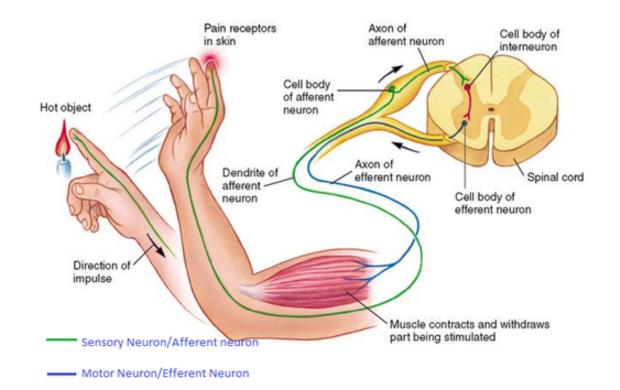
Internet-based computing that provides shared computer processing resources and data to computers and other devices on demand"

Old Paradigm for Mobile Computing (II)


Mobile cloud computing (MCC)

A New Paradigm – Mobile Edge Computing

Mobile edge computing (MEC)


Cloud computing capability and IT services within RAN [ETSI'14]

10

MEC vs. Human Nervous System

Example: Reflex arcs help the body respond to things like pain stimulus by creating a shorter neural pathway than the one going all the way to the brain

Mobile Edge Computing

	Mobile Edge Computing	Mobile Cloud Computing
Hardware	Small-scale data centers	Large-scale data centers
Server location	Co-located with wireless gateways, WiFi routers and BSs	Installed at dedicated buildings
Deployment	Lightweight configuration and planning	Sophisticated configuration and planning
Backhaul Usage	Infrequency use, alleviate congestion	Frequent use, likely to cause congestion
Distance to Users	Tens to hundreds of meters	Across the country boarders

Resource Management for MEC

Computation offloading

- Which tasks should be offloaded to the MEC server?
 - Effective transmissions for the offloading tasks
 - Based on task characteristics and wireless channel conditions
- [Huang'12], [Zhang'13], [Baraossa'14], [Chen'15], etc.

Joint radio and computational resource allocation

- Maximize resource utilization
 - Properly allocate the available resources for each client
 - Joint management of both types of resource
 - Nested with the computation offloading decisions
- [Baraossa'13], [Lorenzo'13], [Sardellitti'16], [You'17], etc.

In This Talk

More on modeling/formulation, less on solution/algorithm

✤ Identify key differences and challenges in MEC

Systems

From single-user to multi-user systems

A Main objectives

- ✤ Save energy
- ✤ Reduce latency

Emphasis on stochastic models

Less investigated before

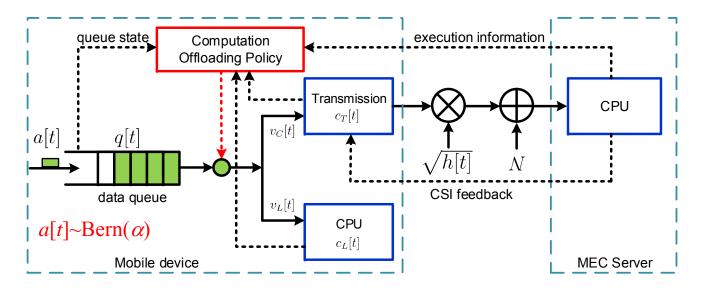
Two-Timescale Computation Offloading

Motivation

Limitations of previous works

- Most existing works assume the offloading processes can be <u>completed within a channel block</u>
- Execution time of typical applications ~ tens of milliseconds
- Duration of a channel block ~ a few milliseconds

Two-timescale computation offloading


- The larger timescale: Whether to offload a task or not?
- The smaller timescale: Transmission adaptation to CSI

A Major challenge

The remote execution latency is unknown when making the offloading decision

System Model

An MEC system with a mobile device and an MEC server

- ♣ Queueing model: $q[t+1] = \min\{(q[t] v_L[t] v_C[t])^+ + a[t], Q\}, t = 1, \cdots$
- ♦ Offloading decisions: $\mathcal{V} = \{v_C[t], v_L[t] | (0,1), (1,0), (1,1), (0,0)\}$
- ***** Local execution: f_{loc} (Hz) (*N* time slots are needed)
- Task input data are encapsulated into M equal-size data packets
 - CSIT, ON/OFF transmit power control (*success trans. prob.* β)
 - One packet is transmitted at each time slot

Optimization Problem Formulation

Power-constrained delay minimization

$$\begin{aligned} & \textbf{System state: } \boldsymbol{\tau}\left[t\right] = \left(q\left[t\right], c_{T}\left[t\right], c_{L}\left(t\right)\right) \\ & \textbf{Stochastic task scheduling policy: } \left\{g_{\tau}^{k}\right\} \end{aligned} \qquad \begin{array}{l} c_{L}(t): \text{ Processing state of the local CPU} \\ & \boldsymbol{\tau}_{\tau}: \text{Steady state probability} \\ & \boldsymbol{\tau}_{\tau}$$

• η : Proportion of tasks that are executed locally

$$\eta = \frac{\sum_{\boldsymbol{\tau}\in\mathcal{S}_1} \pi_{\boldsymbol{\tau}} g_{\boldsymbol{\tau}}^1 + \sum_{\boldsymbol{\tau}\in\mathcal{S}_3} \pi_{\boldsymbol{\tau}} g_{\boldsymbol{\tau}}^3}{\sum_{\boldsymbol{\tau}\in\mathcal{S}_1} \pi_{\boldsymbol{\tau}} g_{\boldsymbol{\tau}}^1 + \sum_{\boldsymbol{\tau}\in\mathcal{S}_2} \pi_{\boldsymbol{\tau}} g_{\boldsymbol{\tau}}^2 + 2\sum_{\boldsymbol{\tau}\in\mathcal{S}_3} \pi_{\boldsymbol{\tau}} g_{\boldsymbol{\tau}}^3}$$

Optimal Solution

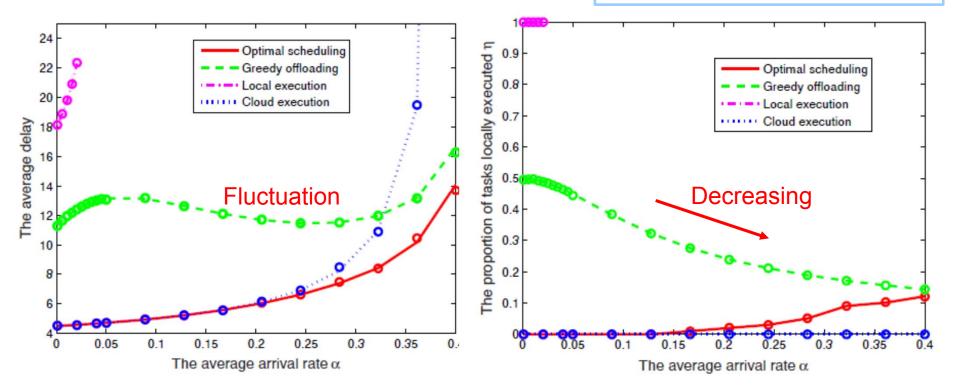
Introduce auxiliary variables

$$x_{\boldsymbol{\tau}}^{k} = \pi_{\boldsymbol{\tau}} g_{\boldsymbol{\tau}}^{k}, k = 1, \cdots, 4, \boldsymbol{\tau} \in \mathcal{S} \Rightarrow \pi_{\boldsymbol{\tau}} = \sum_{k=1}^{4} x_{\boldsymbol{\tau}}^{k}$$

Transformed problem

$$\begin{split} \min_{\boldsymbol{x},\eta} \quad \overline{T} &= \frac{1}{\alpha} \sum_{\boldsymbol{\tau} \in \mathcal{S}} \sum_{k=1}^{4} i \cdot x_{\boldsymbol{\tau}}^{k} + \eta N + (1-\eta) t_{c} \\ \\ & \text{s.t.} \begin{cases} \nu_{loc}\left(\boldsymbol{x}\right) P_{loc} + \beta \nu_{tx}\left(\boldsymbol{x}\right) P_{tx} \leq \overline{P}_{\max} \\ \Gamma\left(\boldsymbol{x},\eta\right) &= (1-\eta) \sum_{\boldsymbol{\tau} \in \mathcal{S}_{1}} x_{\boldsymbol{\tau}}^{1} - \eta \sum_{\boldsymbol{\tau} \in \mathcal{S}_{2}} x_{\boldsymbol{\tau}}^{2} + (1-2\eta) \sum_{\boldsymbol{\tau} \in \mathcal{S}_{3}} x_{\boldsymbol{\tau}}^{3} = 0 \\ F_{\boldsymbol{\tau}}\left(\boldsymbol{x}\right) &= 0, \forall \boldsymbol{\tau} \in \mathcal{S} \\ \sum_{i=0}^{Q} \sum_{m=0}^{M} \sum_{n=0}^{N-1} \sum_{k=1}^{4} x_{(i,m,n)}^{k} = 1 \\ x_{(i,m,n)}^{k} \geq 0, \forall i, m, n, k \\ \eta \in [0,1] \end{cases} \end{split}$$

✤ Reduce to a linear programming problem for a fixed η ✤ η^* can be found via a 1-dimensional search


Solution recovery

$$g_{\tau}^{k*} = \frac{x_{\tau}^{k*}}{\sum_{k=1}^{4} x_{\tau}^{k*}}, \forall \tau \in \mathcal{S}, k \in \{1, 2, 3, 4\}$$

Simulation Results

Greedy offloading: Schedule the waiting tasks to the local CPU and the Tx unit whenever they are idle

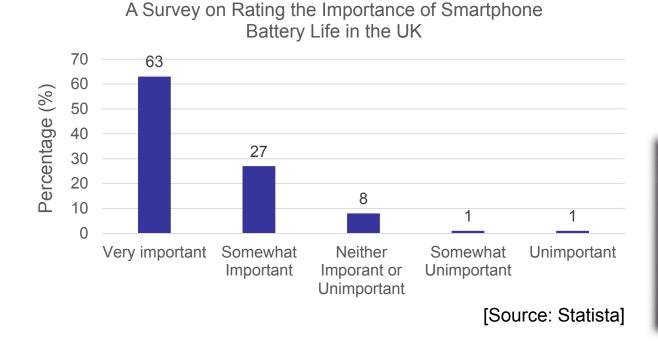
- Behavior of the greedy offloading policy is greatly different
 - Offloading is preferred as $N > t_c$
 - $\alpha \uparrow$, queueing delay \uparrow and execution delay \downarrow

Summary

The first work on two-timescale offloading

- Stochastic task arrival
- Multiple times slots for transmitting

Very challenging problem


- ✤ Greedy does not work
- Lots of room to follow
 - Consider more general MEC systems

MEC Meets Energy Harvesting

MEC With EH Devices (I)

Limitations

- MEC systems with battery-powered devices
 - Computation service interruption when battery energy runs out
- Battery lifetime
 - One of the most important features of smartphones

MEC With EH Devices (II)

Solution: Energy harvesting (EH) mobile devices

- Potentially perpetual battery life
- Sustained and green computing

Challenges

- Intermittent availability of the renewable energy sources
 - Computation offloading policies should adapt to both CSI and energy side information (ESI)

System Model

- ★ Task $A(L, X, \tau_d)$ arrives at each time slot with probability $\rho \in [0,1]$
- ↔ Harvestable energy $\{E_H^t\}$, block fading channel $\{h^t\}$
- ♣ Local execution: DVFS, $f^t \leq f_{CPU}^{max}$
- ✤ Computation offloading: Tx power control, $p^t \le p_{tx}^{max}$
- Powerful MEC server, short computation result

Problem Formulation

Execution cost minimization problem

$$\begin{aligned} & \clubsuit \text{ Offloading indicator: } I^{t} = [I_{m}^{t}, I_{s}^{t}, I_{d}^{t}] \\ & \text{local remote drop} \end{aligned} \\ & \clubsuit \text{ Execution cost: } \text{ cost}^{t} = \mathcal{D}\left(I^{t}, f^{t}, p^{t}\right) = 1(\zeta^{t} = 1) \cdot \left(I_{m}^{t} \sum_{w=1}^{w} \kappa(f_{w}^{t})^{2} + I_{s}^{t} \frac{p^{t}L}{r(h^{t}, p^{t})}\right) \\ & & \& (I^{t}, f^{t}, p^{t}) = I_{m}^{t} \sum_{w=1}^{w} \kappa(f_{w}^{t})^{2} + I_{s}^{t} \frac{p^{t}L}{r(h^{t}, p^{t})}\right) \\ & & & \& (I^{t}, f^{t}, p^{t}) = I_{m}^{t} \sum_{w=1}^{w} \kappa(f_{w}^{t})^{2} + I_{s}^{t} \frac{p^{t}L}{r(h^{t}, p^{t})}\right) \\ & & & \& (I^{t}, f^{t}, p^{t}) = I_{m}^{t} \sum_{w=1}^{w} \kappa(f_{w}^{t})^{2} + I_{s}^{t} \frac{p^{t}L}{r(h^{t}, p^{t})}\right) \\ & & & \& (I^{t}, f^{t}, p^{t}, e^{t} - I_{m}^{t}) \sum_{t=0}^{T-1} \mathbb{E}\left[\text{cost}^{t} \right] \\ & & & \& I_{m}^{t} + I_{s}^{t} + I_{d}^{t} = 1, I_{m}^{t}, I_{s}^{t}, I_{d}^{t} \in \{0, 1\}, t \in \mathcal{T} \\ & & & 0 \leq e^{t} \leq E_{H}^{t}, t \in \mathcal{T} \\ & & \& (I^{t}, f^{t}, p^{t}) \leq B^{t} < +\infty, t \in \mathcal{T} \\ & & \& (I^{t}, f^{t}, p^{t}) \leq f_{d}, t \in \mathcal{T} \\ & & \& (I^{t}, f^{t}, p^{t}) \leq f_{d}, t \in \mathcal{T} \\ & & \& (I^{t}, f^{t}, p^{t}) \leq E_{max}, t \in \mathcal{T} \\ & & \& (I^{t}, f^{t}, p^{t}) \leq E_{max}, t \in \mathcal{T} \\ & & \& (I^{t}, f^{t}, p^{t}) \leq E_{max}, t \in \mathcal{T} \\ & & \& (I^{t}, f^{t}, p^{t}) \leq E_{max}, t \in \mathcal{T} \\ & & \& (I^{t}, f^{t}, p^{t}) \leq F_{max}, t \in \mathcal{T} \\ & & \& (I^{t}, f^{t}, p^{t}) \leq F_{max}, t \in \mathcal{T} \\ & & \& (I^{t}, f^{t}, p^{t}) \leq E_{max}, t \in \mathcal{T} \\ & & \& (I^{t}, f^{t}, p^{t}) \leq F_{max}, t \in \mathcal{T} \\ & & \& (I^{t}, f^{t}, p^{t}) \leq F_{max}, t \in \mathcal{T} \\ & & \& (I^{t}, f^{t}, p^{t}) \leq F_{max}, t \in \mathcal{T} \\ & & \& I^{t} \leq f_{CPU}^{max} \cdot \mathbf{1} \left(I_{m}^{t} = 1\right), w = 1, \cdots, W, t \in \mathcal{T} \\ & \& I^{t} \leq f_{CPU}^{max} \cdot \mathbf{1} \left(I_{m}^{t} = 1\right), w = 1, \cdots, W, t \in \mathcal{T} \end{aligned}$$

The LODCO Algorithm (I)

• **Proposition** (f_w^t is the frequency for the w-th cycle)

✤ f_w^t 's are identical for a computation task ($f_w^t = f^t, \forall w$)

The LODCO algorithm - Lyapunov optimization-based dynamic computation offloading

Solve a deterministic problem at each time slot

$$\min_{\mathbf{I}^{t}, f^{t}, p^{t}, e^{t}} \left(B^{t} - \theta \right) \left[e^{t} - \mathcal{E} \left(\mathbf{I}^{t}, f^{t}, p^{t} \right) \right] + V \cdot \operatorname{cost}^{t}$$

An UB of the Lyapunov drift-plus-penalty

- s.t. All constraints in \mathcal{P}_1 except the energy causality constraint $\mathcal{E}(\mathbf{I}^t, f^t, p^t) \in \{0\} \cup [E_{\min}, E_{\max}], t \in \mathcal{T}$
 - Control parameter, $V(J^2 \cdot \sec^{-1})$
 - Perturbation parameter, $\theta = \tilde{E}_{max} + V\phi \cdot E_{min}^{-1}$
 - Battery output energy non-zero lower bound, E_{\min}

The LODCO Algorithm (II)

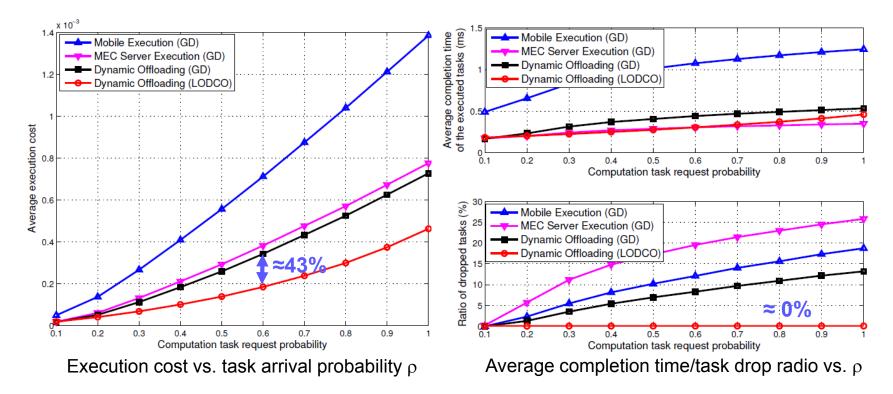
Solving the per-time slot problem

Optimal energy harvesting

$$e^{t*} = E_H^t \cdot \mathbf{1}\{\tilde{B}^t \le 0\}$$

Optimal computation offloading decisions

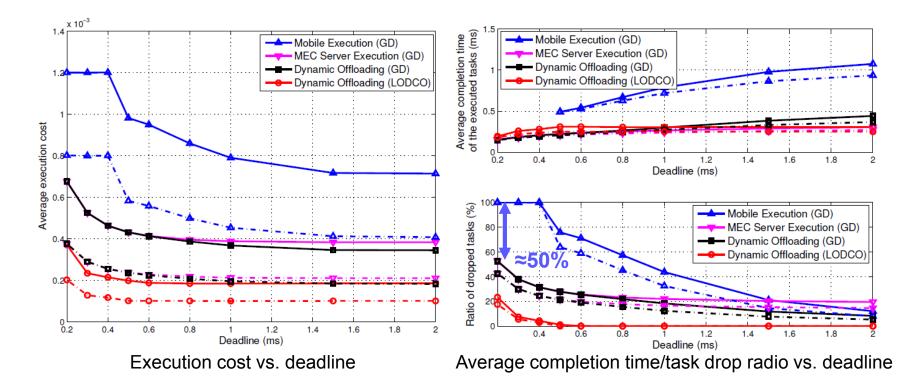
$$< \mathbf{I}^{t*}, f^{t*}, p^{t*} > = \arg \min_{<\mathbf{I}^t, f^t, p^t > \in \mathcal{F}_{\mathrm{CO}}^t} J_{\mathrm{CO}}^t \left(\mathbf{I}^t, f^t, p^t \right)$$


- Evaluate the optimal values of the three computation modes
- Semi-closed form solution is available

Property of the LODCO algorithm

- Satisfies the energy causality constraint
- ♣ Achieves asymptotic optimality when $V \rightarrow +\infty$, $E_{\min} \rightarrow 0$

Simulation Results (I)


Performance evaluation

Execution cost is greatly reduced by the LODCO algorithm
 Avoid task failures with minor delay performance degradation

Simulation Results (II)

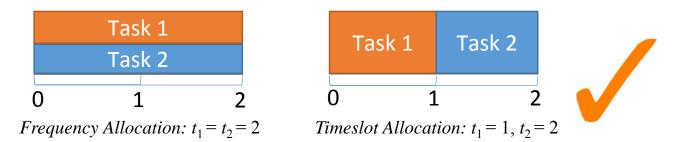
Performance evaluation

✤ Benefits of MEC: $\approx 50\%$ tasks can be executed even with the MEC server execution (GD) policy

Summary

- The first work on MEC with EH devices
 - Results showed such systems are promising
- Description Use A state of the state of t
 - Lyapunov optimization-based dynamic computation offloading
- Extensions
 - More general MEC systems, e.g., multi-user and/or multi-server systems
 - Combine wireless power transfer with EH

Joint Communication and Computational Resource Management

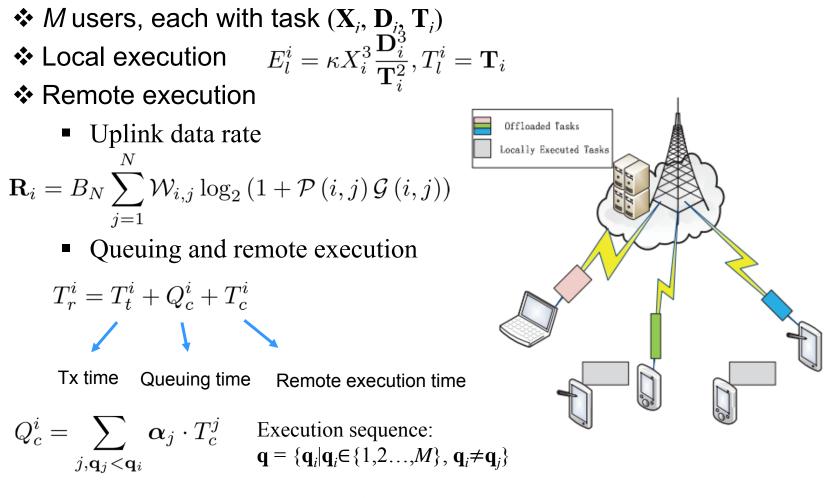

Motivation

Limitations of previous works

Idealized computation model of the MEC server

- Infinite amount of computational resource
- Constant execution time
- MEC server with limited computational resources
 - Frequency allocation

1) May not be supported 2) Prolongs the execution time unnecessarily



Challenges

- Non-preemptive CPU scheduling is NP-hard [Jeffay'91]
- Nested with the offloading decision and radio resource allocation

System Model

Single-cell OFDMA MEC systems

Offloading decision: α_i

Problem Formulation

Total energy consumption minimization problem

$$\begin{split} & \underset{\boldsymbol{\alpha}, \mathcal{W}, \mathcal{P}, \mathbf{q}}{\text{minimize}} \quad \sum_{i=1}^{M} \left((1 - \alpha_i) \cdot E_l^i + \alpha_i \cdot E_l^i \right) \\ & \text{subject to} \\ & \underbrace{\sum_{i=1}^{M} \mathcal{W}(i, j) \leq 1, \quad \forall j \in \mathcal{C}}_{\mathbf{q}_i \neq \mathbf{q}_j, if \ i \neq j. \quad \forall i, \ j \in \mathcal{U}} \\ & \mathbf{q}_i \neq \mathbf{q}_j, if \ i \neq j. \quad \forall i, \ j \in \mathcal{U} \\ & \mathbf{p}_i = \sum_{j=1}^{N} \mathcal{W}(i, j) \mathcal{P}(i, j) \leq \mathbf{p}_i^m, \quad \forall i \in \mathcal{U} \\ & \mathbf{R}_i = B_N \sum_{j=1}^{N} \mathcal{W}_{i, j} \log(1 + \mathcal{P}(i, j) \mathcal{G}(i, j)), \quad \forall i \in \mathcal{U} \\ & E_l^i = \kappa X^3 \frac{\mathbf{D}_i^3}{\mathbf{T}_i^2}, \quad \forall i \in \mathcal{U} \\ & E_r^i = \frac{\mathbf{D}_i(\mathbf{p}_i + \mathbf{p}_i^c)}{\mathbf{R}_i}, \quad \forall i \in \mathcal{U} \\ & \mathbf{T}_r^i = \frac{\mathbf{D}_i}{\mathbf{R}_i} + \sum_{j, \mathbf{q}_j < \mathbf{q}_i}^{M} \alpha_j T_c^j + \alpha_i T_c^i \leq T_i, \quad \forall i \in \mathcal{U}. \end{split}$$

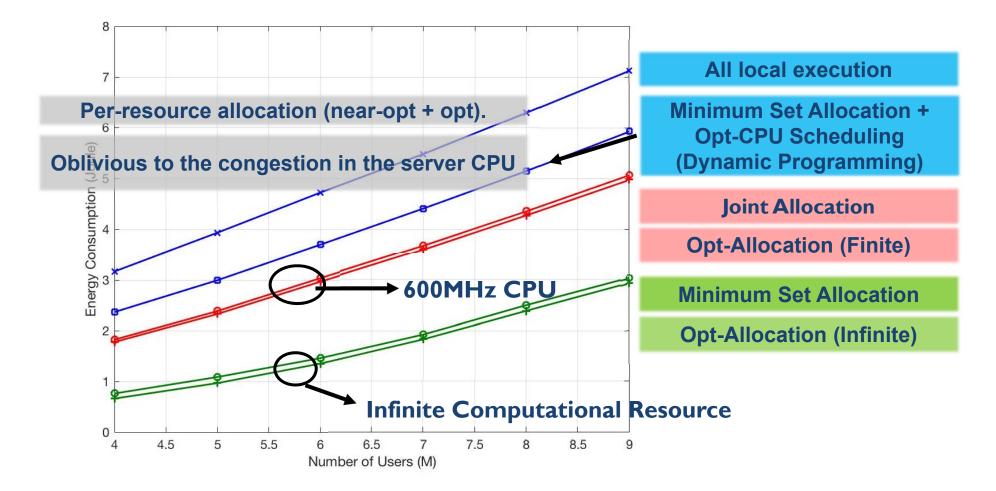
> NP-hard: Mixed-integer non-linear programming

Proposed Algorithms

Case I: Negligible remote processing time

- ✤ \mathcal{P}, α can be easily determined once \mathcal{W} is fixed
- Minimum Set Allocation Algorithm
 - Main idea: Find the least number of subcarriers (minimum set) for each user that support its favorable offloading
 - The users that can save more energy have higher priorities

Case II: Non-negligible remote processing time


Joint Allocation Algorithm, O(M²N)

1: Allocate the minimum set to the user who saves the *most energy with each unit of CPU time*, until the remaining subcarrier cannot support any user left to offload.

2: Allocate each of remaining subcarrier to the offloaded user gaining the *largest marginal energy saving* with it.

Simulation Results (I)

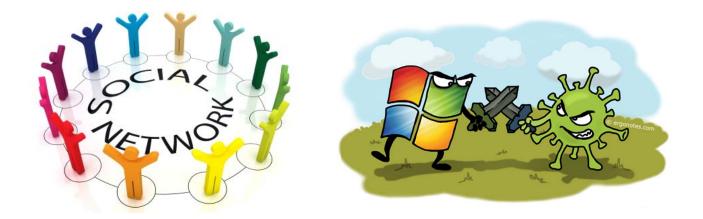
Performance evaluation

Simulation Results (II)

Coverage of the cloudlet

Summary

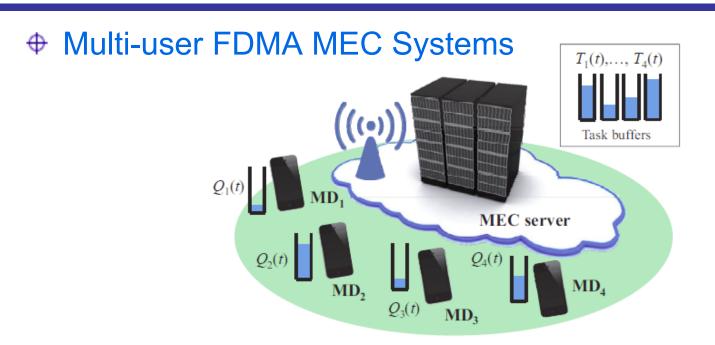
Joint radio and computation resource management is necessary


- Lower energy consumption
- Better coverage of cloudlets
- Such problems are highly challenging
 - More efficient algorithms are needed
 - Difficult to extend to stochastic models

Stochastic Resource Management for MEC

Motivation

Limitations of previous works


- Existing works mainly focus on delay-sensitive applications
- Not applicable to delay-tolerant applications

Challenges

- Stochastic task models need to be incorporated
- Temporal and spatial correlations on system operations
- Joint management on both types of resources

System Model

- Queuing model
 - Mobile side: $Q_i(t+1) = (Q_i(t) D_{\Sigma,i}(t))^+ + A_i(t)$ Task arrival (bits)
 - Server side: $T_i(t+1) = (T_i(t) D_{s,i}(t))^+ + \min\{(Q_i(t) D_{l,i}(t))^+, D_{r,i}(t)\}$
- Mobile/server CPU speeds, $f_{l,i}(t)/f_{C,m}(t)$
- MEC scheduling decision, $D_{s,i}(t)$
- ↔ Transmit power and bandwidth allocation, $p_{tx,i}(t)$ and $\alpha_i(t)$

Power-rate function

 $\mathsf{CSI} \Gamma_i(t)$

Problem Formulation

Average weighted sum power consumption minimization $\mathcal{P}_{2}: \min_{\{\mathbf{X}(t)\}} \lim_{T \to +\infty} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\sum_{i \in \mathcal{N}} w_{i} \left(p_{\mathrm{tx},i} \left(t \right) + \frac{p_{l,i} \left(t \right)}{I} \right) + w_{N+1} \frac{p_{\mathrm{ser}} \left(t \right)}{I} \right]$ $p_{l,i}(t) = \kappa_{\text{mob},k} f_{l,i}^3(t) \qquad p_{\text{ser}}(t) = \sum_{m \in \mathcal{M}} \kappa_{\text{ser},m} f_{C,m}^3(t)$ $0 \leq f_{C,m}(t) \leq f_{C_m,\max}, m \in \mathcal{M}, t \in \mathcal{T} \quad \mathbf{PU \text{ speed constraints}}$ s.t $0 \leq f_{l,i}(t) \leq f_{i,\max}, i \in \mathcal{N}, t \in \mathcal{T}$ $0 \le p_{\text{tx},i}(t) \le p_{i,\max}, i \in \mathcal{N}, t \in \mathcal{T}$ $\boldsymbol{\alpha}(t) \in \mathcal{A}, t \in \mathcal{T}$ Tx power and bandwidth allocation constraints $\boldsymbol{\alpha}(t) \in \mathcal{A}, t \in \mathcal{T}$ $\sum_{i \in \mathcal{N}} D_{s,n}(t) L_n \leq \sum_{m \in \mathcal{M}} f_{C,m}(t) \tau, t \in \mathcal{T}$ $A = \{ \alpha | \alpha_i \geq \epsilon_A, \sum_{i \in \mathcal{N}} \alpha_i \leq 1 \}, \epsilon_A \searrow 0^+$ Server scheduling constraints $\lim_{T \to +\infty} \frac{\mathbb{E}\left[\left|Q_{i}\left(T\right)\right|\right]}{T} = 0, i \in \mathcal{N}$ $\lim_{T \to +\infty} \frac{\mathbb{E}\left[\left|T_{i}\left(T\right)\right|\right]}{T} = 0, i \in \mathcal{N}$ Mean rate stability A challenging stochastic optimization problem!

Proposed Solution (I)

Challenges

- Large amount of side information to be handled
- Optimal decisions are temporally and spatially correlated
- Joint radio and computational resource management

Online resource management algorithm

Solve a deterministic optimization problem at each time slot

$$\min_{\mathbf{X}(t)} -\sum_{i \in \mathcal{N}} Q_i(t) D_{\Sigma,i}(t) - \sum_{i \in \mathcal{N}} T_i(t) \left(D_{s,i}(t) - D_{r,i}(t) \right) + V \cdot P_{\Sigma}(t)$$

s.t All constraints in \mathcal{P}_2 except the stability constraints

- Control parameter: *V* (bits · W⁻¹)
- Decomposable into 3 sub-problems

An UB of the Lyapunov

drift-plus-penalty

Proposed Solution (II)

Optimal solution at each time slot

Optimal local CPU speed

$$f_{i}^{\star}(t) = \begin{cases} \min\{f_{i,\max}, \sqrt{\frac{Q_{i}(t)\tau}{3\kappa_{\min,i}w_{i}VL_{i}}}\}, & w_{i} > 0\\ f_{i,\max}, & w_{i} = 0 \end{cases}, i \in \mathcal{N}$$

- Optimal transmit power and BW allocation
 - Device offloads only when $Q_i(t) > T_i(t)$
 - Optimal solution for devices in $\tilde{\mathcal{N}}^{c}(t)$ based on the **G-S method**
- Optimal server CPU speed and scheduling decision
 - The device (i_N^{max}) with highest value of $T_i(t)/L_i$ will be served

$$f_{C,m}^{\star}(t) = \begin{cases} \min\{f_{C_m,\max}, \sqrt{\frac{T_{i_{\mathcal{N}}^{\max}}(t)\tau}{3\kappa_{\operatorname{ser},m}w_{N+1}VL_{i_{\mathcal{N}}^{\max}}}}\}, & w_{N+1} > 0\\ f_{C_m,\max}, & w_{N+1} = 0 \end{cases}, m \in \mathcal{M}$$

Delay-improved mechanism

♣ Based on $\mathbf{X}^{\star}(t)$, modify $\mathbf{D}_{s}^{\star}(t)$ whenever $D_{s,i_{\mathcal{N}}^{\max}}^{\star}(t) > T_{i_{\mathcal{N}}^{\max},act}(t)$

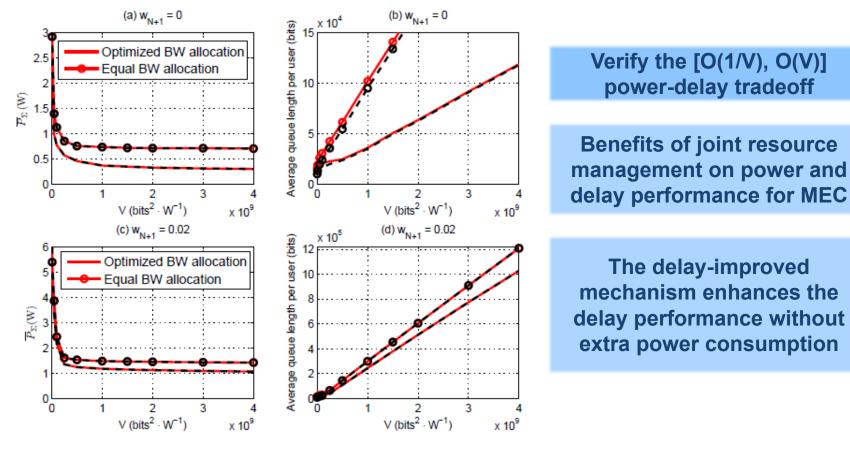
Proposed Solution (III)

Performance analysis

The average weighted sum power consumption satisfies

$$\overline{P}_{\Sigma}^{\star} \le P_{\Sigma, \mathcal{P}_2}^{\text{opt}} + \frac{C}{V}$$

✤ All queues are mean rate stable

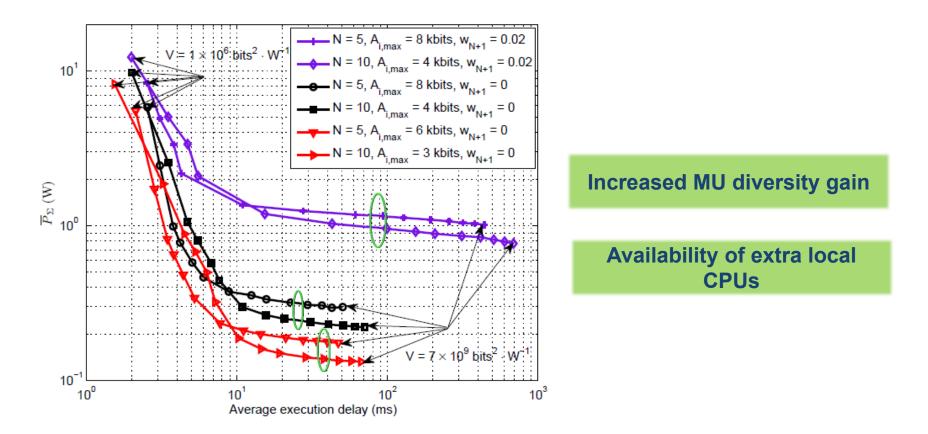

Average sum queue length of the task buffer satisfies

$$\lim_{T \to +\infty} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\sum_{i \in \mathcal{N}} \left(Q_i\left(t\right) + T_i\left(t\right) \right) \right] \le \frac{C + V \cdot \left(\Psi\left(\epsilon\right) - P_{\Sigma, \mathcal{P}_2}^{\text{opt}} \right)}{\epsilon}$$

Power-delay tradeoff in multi-user MEC systems: [O(1/V), O(V)]

Simulation Results (I)

Benchmark: Equal bandwidth allocation



N = 5, $\lambda_i = 4$ kbits/slot

Performance of the delay-improved mechanism is shown by the dash curves.

Simulation Results (II)

Performance evaluation

Summary

- Joint radio and computation resource management is necessary
- Lyapunov optimization provides low-complexity online algorithm
 - Sub-problems require special efforts
 - Theoretical performance guarantee
 - Power-delay tradeoff

Extensions

- Fairness consideration among users
- Distributed implementation

Key Takeaways

Resource management for MEC

- Joint management on radio and computational resource
- Essential to incorporate the CSI and task characteristics
- Stochastic models are important
- Efficient and effective algorithms

Interesting research directions

- Mobility-aware resource management for MEC
- Server cooperation in MEC
- Dependency-aware offloading in MEC
- MEC with coded distributed computing
- * ...

References

- J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, "Delay-optimal computation task scheduling for mobile-edge computing systems," in *Proc. IEEE Int. Symp. Information Theory (ISIT)*, Barcelona, Spain, Jul. 2016.
- Y. Mao, J. Zhang, and K. B. Letaief, "Dynamic computation offloading for mobile-edge computing with energy harvesting devices," *IEEE J. Sel. Areas Commun.*, vol. 34, no. 12, pp. 3590-3605, Dec. 2016.
- Y. Yu, J. Zhang, and K. B. Letaief, "Joint subcarrier and CPU time allocation for mobile edge computing," in *Proc. IEEE Global Commun. Conf. (GLOBECOM)*, Washington, DC, USA, Dec. 2016.
- Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, "Stochastic joint radio and computational resource management for mobile-edge computing systems," *IEEE Trans. Wireless Commun.*, to appear.
- Y. Mao, J. Zhang, and K. B. Letaief, "Joint task offloading scheduling and transmit power allocation for mobile-edge computing systems," in *Proc. IEEE Wireless Commun. Networking Conf. (WCNC)*, San Francisco, CA, USA, Mar. 2017.

Thank you!

