Dense Cooperative Wireless Networks for 5G

Jun ZHANG

Outline

Background – Why we need 5G?

Millimeter-wave communications

Structured optimization for cooperation

Large-scale network analysis

Takeaways

Exponentially Growing Mobile Data

1 EB (Exabyte) = 10¹⁸ B = 1 billion GB Ericsson traffic measurements (Q1 2018)

Exploding Mobile Applications

Source: Lux Review

Intelligent Mobile Applications

Higher data rate

Uniform coverage

Massive connections

Green communications

Security & privacy

A (Personal) Journey From 4G to 5G

The Holy Grail for 5G -- The I000X Capacity Challenge

The I000X Capacity Challenge

Capacity = Bandwidth (Hz) x Spectral Efficiency (bps/Hz) x # Links

1000 = 10 X 5 X 20

Hybrid Beamforming for Millimeter-Wave Communications

Why mm-wave?

- Current cellular systems (microwave spectrum) ~ 600MHz
- Mm-wave spectrum ~ 29GHz

5G = Millimeter-wave

At least to someone

Design Challenges

Data Rate = Spectral Efficiency x Bandwidth

Challenge I

Receive Power: $P_r = \frac{P_t}{4\pi d^2} \frac{\lambda^2}{4\pi}$

Noise Power: $N_o = kT_e B$

$$P_r = rac{P_t}{4\pi d^2} rac{\lambda^2}{4\pi} G_r G_t$$
Beamforming gains

Design Challenges

Fully digital beamformer

Challenge II

Main Design Objectives

- High spectral efficiency
 - Approach fully digital beamforming
- High computational efficiency
 - Overcome non-convexity, large problem sizes
- High hardware efficiency
 - With as few hardware components as possible

Spectral Efficiency: Manifold Optimization

> Difficulty: Analog beamformer with unit modulus constraints

minimize
$$\|\mathbf{F}_{\text{opt}} - \mathbf{F}_{\text{RF}}\mathbf{F}_{\text{BB}}\|_F^2$$

subject to $|(\mathbf{F}_{\text{RF}})_{i,j}| = 1, \forall i, j.$

Non-convex

But forms a complex circle manifold

Proposal

- Manifold optimization for analog beamformer
 - Optimization over **non-Euclidean geometry**
- Alternating minimization for analog/digital

Spectral Efficiency: Manifold Optimization

How many RF chains are needed?

data streams

$$N_{\rm t} = 144, N_{\rm r} = 36, N_{\rm RF}^{\rm t} = N_{\rm RF}^{\rm r} = N_{\rm RF}, N_s = 2, \text{SNR} = 0 \,\text{dB}$$

X. Yu, J.-C. Shen, **J. Zhang**, and K. B. Letaief, "Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems," *IEEE J. Sel. Topics Signal Process.*, vol. 10, no. 3, pp. 485-500, Apr. 2016.

Computational Efficiency: Convex Relaxation

$$\begin{array}{ll} \underset{\mathbf{F}_{\mathrm{RF}},\mathbf{F}_{\mathrm{BB}}}{\operatorname{minimize}} & \|\mathbf{F}_{\mathrm{opt}} - \mathbf{F}_{\mathrm{RF}}\mathbf{F}_{\mathrm{BB}}\|_{F}^{2} \\ \text{subject to} & |(\mathbf{F}_{\mathrm{RF}})_{i,j}| = 1 \end{array} \qquad \begin{array}{ll} \underset{\mathbf{F}_{\mathrm{RF}},\mathbf{F}_{\mathrm{BB}}}{\operatorname{minimize}} & \|\mathbf{F}_{\mathrm{opt}} - \mathbf{F}_{\mathrm{RF}}\mathbf{F}_{\mathrm{BB}}\|_{F}^{2} \\ \text{subject to} & |(\mathbf{F}_{\mathrm{RF}})_{i,j}| \leq 1 \end{array}$$

- Solution of relaxed problem: SVD
- > Analog beamformer: Phase extraction

X. Yu, **J. Zhang**, and K. B. Letaief, "Alternating minimization for hybrid precoding in multiuser OFDM mmWave Systems," *IEEE Asilomar Conf. on Signals, Systems, and Computers*, Nov. 2016. (**Invited Paper**)

Hardware Efficiency: A New Analog Network

Hardware Efficiency: A New Analog Network

How many phase shifters are needed?

$$N_{\rm t}=256,\,N_{\rm r}=16,\,K=4,\,F=128,\,N_s=2,\,N_{\rm RF}^{\rm t}=8,\,{\rm and}\,\,N_{\rm RF}^{\rm r}=2$$

X. Yu, **J. Zhang**, and K. B. Letaief, "Hybrid precoding in millimeter wave systems: How many phase shifters are needed?" in *Proc. IEEE Globecom*, Singapore, Dec. 2017. (Best Paper Award)

Conclusions

- A new design aspect
 - Hardware-aware communications
- An effective design approach
 - Hardware-algorithm co-design
- Three key design aspects

Future Direction I

Mm-wave with low-precision ADCs

Fig. 1. The MIMO system with low precision ADCs.

Future Direction II

Joint mm-wave communication-radar for connected vehicles

- Radar: Continuous automatic detection/ranging, even for noncommunication-enabled users
- V2V: Collaborative communication for real-time cooperative detection and ranging

Structured Optimization for Cooperative DenseNets

Network Densification: The Dominant Theme for 5G

Cooperation is critical for interference management and resource allocation in wireless dense networks (DenseNets)

Structured Optimization/Estimation

Previous successes

Emerging applications in wireless networks

Case Study: Network Power Minimization in Cloud-RAN

Problem Formulation

Prior works: Heuristic or computationally expensive [Philipp, et. al, TSP 13], [Luo, et. al, JSAC 13], [Quek, et. al, TWC 13]

Innovation I: Group Sparse Beamforming

Proposal: Identify solution structures

– Switch off the \imath -th RRH $ilde{\mathbf{v}}_{\imath}=\mathbf{o}$, i.e., group sparsity structure in \mathbf{v}

Computational Challenge

- Prior works: Mainly focus on small-size networks
- Unique challenges in dense Cloud-RANs
 - 1) High dimension; 2) Large number of constraints; 3) complicated structures

 Existing approach: Disciplined convex programming framework [Grant & Boyd '08]

General purpose, inefficient

Innovation II: A Two-stage Optimization Framework

The Power of Group Sparse Beamforming

Group spare beamforming (10 RRHs, 15 MUs)

Further improvement

- Sparsity enhancement [JSAC 2016];
- Random matrix approach [TWC 2018]

Y. Shi, J. Zhang, and K. B. Letaief, "Group sparse beamforming for green Cloud-RAN," *IEEE Trans. Wireless Commun.*, vol. 13, no. 5, pp. 2809-2823, May 2014. 2014. (The 2016 Marconi Prize Paper Award)

The Efficacy of Large-scale Optimization

Example: Power minimization coordinated beamforming problem

Network Size (L=K)		20	50	100	150
CVX+SDPT3	Modeling Time [sec]	0.7563	4.4301	·N/A	N/A
	Solving Time [sec]	4.2835	326.2513	N/A	N/A
	Objective [W]	12.2488	6.5216	N/A	N/A
Matrix Stuffing+ADMM	Modeling Time [sec]	0.0128	0.2401	2.4154	9.4167
	Solving Time [sec]	0.1009	2.4821	23.8088	81.0023
	Objective [W]	12.2523	6.5193	3.1296	2.0689

Matrix stuffing can speedup 60x over CVX

ADMM can speedup 130x over the interior-point method

Y. Shi, **J. Zhang**, B. O'Donoghue, and K. B. Letaief, "Large-scale convex optimization for dense wireless cooperative networks," *IEEE Trans. Signal Process.*, vol. 63, no. 18, pp. 4729-4743, Sept. 2015. (The 2016 IEEE Signal Processing Society Young Author Best Paper Award)

Conclusions

- Structured optimization is a powerful tool for designing cooperative DenseNets
- Large-scale convex optimization algorithms are necessary
- Other applications
 - Sparse estimation for channel information acquisition
 - J.-C. Shen, **J. Zhang**, et. al, "Compressed CSI acquisition in FDD massive MIMO: How much training is needed?" IEEE Trans. Wireless Commun., 2016.
 - Low-rank matrix completion for topological interference management
 - Y. Shi, **J. Zhang**, and K. B. Letaief, "Low-rank matrix completion for topological interference management by Riemannian pursuit," IEEE Trans. Wireless Commun., 2016.

Future Direction I

Massive connectivity for IoT applications

Sporadic traffic: only a small fraction of potentially large number of devices are active

Sparse estimation for user activity detection and channel estimation

Future Direction II

Overhead-free communications for IoT

Overhead-free communication

$$y = \sum_{i=1}^{K} h_i * x_i + w$$

Target: Simultaneous channel estimation and signal detection via blind deconvolution/demixing

Large-scale Network Analysis via Stochastic Geometry

Traditional Approaches for Network Analysis

> Either less accurate or weakens the analytical tractability

J. Xu, **J. Zhang**, and J. G. Andrews, "On the accuracy of the Wyner model in cellular networks," *IEEE Trans. Wireless Commun.*, vol. 10, no. 9, pp. 3098-3109, Sept. 2011.

Stochastic Geometry for Wireless Networks

Base station locations in a 4G network

Poisson distributed base stations

Stochastic Geometry for Wireless Networks

Why Random Spatial Network Models?

Advantages

- Avoid building and running system-level simulations
- Quickly evaluate different PHY/MAC techniques
- Expose salient network properties

Limitations of existing studies

Tractable results mainly for single-antenna networks

Essential for 5G

- Highly complicated expressions for multi-antenna networks
- A sample result:

$$p_{c}(\tau) = \lambda \sum_{n=0}^{M-1} \frac{1}{n!} \sum_{p=0}^{n} B_{n,p}(x_{1}, \dots, x_{n-p+1}) \frac{p!(2\tau^{\delta})^{p}}{(\lambda \tau^{\delta} C + \lambda)^{p+1}}$$

where

Need a more tractable approach to characterizing multi- $\frac{\delta\lambda}{i=1}$ (tenna 5G-networks!

 $B_{n,p}(x_1,\dots,x_{n-p+1})$ is the incomplete exponential Bell polynomials, and the B'(a,b,c) is the complementary in complete Beta function.

Network Model

- Transmitters: a Poisson Point Process
- \triangleright Desired signal: $S = P_t g_{x_0} r_0^{-\alpha}$
- ➤ Interference power:

$$I = \sum_{x \in \Phi'} P_t g_x ||x||^{-\alpha}$$

SINR =
$$\frac{g_{x_0} r_0^{-\alpha}}{\sigma_n^2 + \sum_{x \in \Phi'} g_x ||x||^{-\alpha}}$$

Coverage Probability: $p_{\rm c}(\tau) = \mathbb{P}\left[\text{SINR} > \tau\right]$

Our Result – A General Matrix Representation

$$p_{\mathrm{c}}(\tau) = \mathbb{E}_{r_0} \left[\left\| e^{\mathbf{T}_M} \right\|_1 \right] \qquad \mathbf{T}_M = \begin{bmatrix} t_0 \\ t_1 & t_0 \\ t_2 & t_1 & t_0 \\ \vdots & & \ddots \\ t_{M-1} & \cdots & t_2 & t_1 & t_0 \end{bmatrix}$$

$$t_k = rac{(-s)^k}{k!} \eta^{(k)}(s) \quad \eta(s) = \log \mathcal{L}(s)$$
 (Log-Laplace transform) $\|\mathbf{A}\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^m |a_{ij}|$

- A general framework for multi-antenna networks
 - A compact expression for numerical evaluation
 - Closed-form expressions for many cases
- Further analysis via properties of I₁-Toeplitz matrices
 - Investigate effects of densification/antenna size

X. Yu, C. Li, **J. Zhang**, and K. B. Letaief, "A tractable framework for performance analysis of dense multi-antenna networks," in *Proc. IEEE Int. Conf. Commun. (ICC)*, Paris, France, May 2017.

Applications

Area spectral efficiency and energy efficiency analysis

C. Li, J. Zhang, and K. B. Letaief, "Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations," *IEEE Trans. Wireless Commun.*, vol. 13, no. 5, pp. 2502-2517, May 2014.

Millimeter-wave network analysis

X. Yu, J. Zhang, M. Haenggi, and K. B. Letaief, "Coverage analysis for millimeter wave networks: The impact of directional antenna arrays," *IEEE J. Select. Areas Commun*, vol. 35, no. 7, pp. 1498-1512, Jul. 2017.

Optimize success probability vs link reliability tradeoff

C. Li, J. Zhang, J. G. Andrews, and K. B. Letaief, "Success probability and area spectral efficiency in multiuser MIMO HetNets," *IEEE Trans. Commun.*, vol. 64, no. 4, pp. 1544-1556, Apr. 2016.

Develop interference management techniques

 C. Li, J. Zhang, M. Haenggi, and K. B. Letaief, "User-centric intercell interference nulling for downlink small cell networks," *IEEE Trans. Commun.*, vol. 63, no. 4, pp. 1419-1431, Apr. 2015.

Case Study: Energy Efficiency

- Network energy efficiency $\eta_{\rm EE} = \frac{R_{\rm a}}{P_{\rm a}}$ Area spectral efficiency (ASE)
- Total power consumption of a unit area $P_{\rm a} = \lambda_b p_{\rm a} \left(\frac{1}{r} P_{\rm t} + M P_{\rm c}\right) + \lambda_b P_0$ Non-transmission power consumption

Transmit power

Circuit power

- ASE increases when deploying more BSs
- Power consumption will also increase
- > How will the energy efficiency change with network densification?
- ➤ How will the energy efficiency change with # of BS antennas?

Case Study: Energy Efficiency

Effect of densification Non-transmission power consumption

Effect of more antennas Circuit power consumption

Conclusions

- A unified analytical framework for tractable analysis of largescale multi-antenna networks
- Abundant applications in wireless networks
 - ➤ Coverage/outage, ASE, EE ...
 - ➤ Small cells, HetNets, mm-wave ...
 - > ASE vs link reliability tradeoff
 - > Interference coordination
 - > PHY-layer security

Future Direction: New Scenarios

• UAVs: 3D coverage, different propagation properties

V2X: mobility, spatial modeling of roads

Takeaways

via

Stochastic Geometry

Additional Remarks

The Era of Mobile Intelligence

A. Turing (1912—1954)

To Meet the Computation Demand – A 3-Layer Approach

Cloud Computing

Mobile Edge Computing

Distributed Computing Systems

Mobile Edge Computing

- Y. Mao, C. You, **J. Zhang**, K. Huang, and K. B. Letaief, "A survey on mobile edge computing: The communication perspective," *IEEE Commun. Surveys Tuts.*, 2017.
- Y. Mao, J. Zhang, S.H. Song, and K. B. Letaief, "Stochastic joint radio and computational resource management for multi-user mobile-edge computing systems," *IEEE Trans. Wireless Commun.*, vol. 16, no. 9, pp. 5994-6009, Sept. 2017.
- Y. Mao, J. Zhang, and K. B. Letaief, "Dynamic computation offloading for mobile-edge computing with energy harvesting devices," *IEEE J. Select. Areas Commun. Series on Green Commun. and Networking*, vol. 34, no. 12, pp. 3590-3605, Dec. 2016.

Cloud Computing

- Y. Yu, R. Huang, W. Wang, J. Zhang, and K. B. Letaief, "SP-Cache: Load-balanced, Redundancy-free Cluster Caching with Selective Partition," SC18, Dallas, TX, November, 2018. (Acceptance Rate: 19%)
- Y. Yu, W. Wang, J. Zhang, Q. Weng, and K. B. Letaief, "OpuS: Fair and efficient cache sharing for in-memory data analytics," ICDCS 2018. (Acceptance Rate: 20%)
- Y. Yu, W. Wang, J. Zhang, and K. B. Letaief, "LRC: Dependency-aware cache management in data analytics clusters," *IEEE INFOCOM* 2017. (Acceptance Rate: 21%)

Wireless Edge Caching

- R. Wang, **J. Zhang**, S.H. Song, and K. B. Letaief, "Exploiting mobility in cache-assisted D2D networks: Performance analysis and optimization," *IEEE Trans. Wireless Commun.*, to appear.
- X. Peng, Y. Shi, **J. Zhang**, and K. B. Letaief, "Layered group sparse beamforming for cache-enabled green wireless networks," *IEEE Trans. Commun.*, vol. 65, no. 12, pp. 5589-5603, Dec. 2017.
- R. Wang, **J. Zhang**, S.H. Song, and K. B. Letaief, "Mobility-aware caching in D2D networks," *IEEE Trans. Wireless Commun.*, vol. 16, no. 8, pp. 5001-5015, Aug. 2017.
- R. Wang, X. Peng, **J. Zhang**, and K. B. Letaief, "Mobility-aware caching for content-centric wireless networks: Modeling and methodology," *IEEE Commun. Mag.*, vol. 54, no. 8, pp. 77-83, Aug. 2016.
- J. Liu, B. Bai, **J. Zhang**, and K. B. Letaief, "Content caching at the wireless network edge: A distributed algorithm via brief propagation," in *Proc. IEEE Int. Conf. Commun. (ICC)*, Kuala Lumpur, Malaysia, May 2016. (**Best Paper Award**)
- X. Peng, J.-C. Shen, **J. Zhang**, and K. B. Letaief, "Joint data assignment and beamforming for backhaul limited caching networks," in *Proc. IEEE Int. Symp. on Personal Indoor and Mobile Radio Comm. (PIMRC*), Washington, DC, Sept. 2014. (**Best Paper Award**)