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* Task-oriented communication for edge-assisted inference via
information bottleneck (IB)
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distributed information bottleneck (DIB)
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Task-oriented communication and Edge Al



“When wireless is perfectly applied
the whole earth will be converted into
a huge brain, which in fact it is, all
things being particles of a real and
rhythmic whole. We shall be able to
communicate with one another

instantly, irrespective of distance. Not

only this, but through television and
telephony we shall see and hear one

another as perfectly as though we
were face to face, despite intervening
distances of thousands of miles; and
the instruments through which we

shall be able to do this will [fit in a]

vest pocket.”
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https://marionoioso.com/2018/0|/08/from-digital-first-to-ai-first/
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Mobile Intelligence

A single device is limited in
* onboard computing resources;
* limited perception capability;
* limited energy supply.

Effective communication is critical to
* access external computing power;
* improve perception capability;
* prolong battery time;
* overcome partial observation.
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Edge Al

Y. Shi, K.Yang, T. Jiang, J. Zhang, and K. B. Letaief,““Communication-efficient edge Al: Algorithms and systems,” IEEE Commun. Surveys Tuts., vol. 22, no. 4, pp. 21 67—
2191, 4th Quart. 2020.




New communication challenges

* Enormous volume of data
* For example, 4TB sensing data/day for autonomous
vehicles
* Low-latency communication
* Millisecond-level latency for safety-critical applications

* Resource-constrained devices

* Limited onboard computation and communication
resources




Three levels of communications

THE MATHEMATICAL THEORY OF
COMMUNICATION

Shannon’s information theory

Level A * How accurately can the symbols of communication be
The technical problem transmitted?

Level B * How precisely do the transmitted symbols convey the desired
The semantic problem meaning!

Level C * How effectively does the received meaning affect conduct in the
The effectiveness problem desired way?

W. Weaver. Recent contributions to the mathematical theory of communication. In C. E. Shannon and W. Weaver, editors, The Mathematical Theory of
Communication. University of lllinois Press, Urbana, 1949.




A simplified picture

-- Data-oriented vs. task-oriented communication

Data-oriented Communication
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This is how current security
camera systems and virtual
assistants (e.g., Siri) work!
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Task-oriented communication

* To transmit concise and informative feature with low-
complexity encoder for high-accuracy inference

Key design tools

(available only recently)
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Task-oriented communication for edge-assisted inference
via information bottleneck

J. Shao, Y. Mao, and J. Zhang, “Learning task-oriented communication for edge inference: An
information bottleneck approach,” IEEE |. Select. Areas Commun., vol. 40, no. |, pp. 197-21 1, Jan. 2022.
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The Information Bottleneck (IB) problem

-- An information-theoretical framework for learning

;\i" —’\\ = pa '—\ii’!\

Y o) X ) T
Target Data Representation

IB strive for minimality and sufficiency of the latent T
* Minimality: minimizing amount of information necessary of X for the task;
» Sufficiency: preserving the information to solve the task (inferring Y).

R inf  I(X;T)

subject to: I(Y;T) > « or min—[(Y;T) + BI(X; T)

N.Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” Annu.Allerton Conf. Commun. Control Comput., 1999.

Z. Goldfeld and Y. Polyanskiy, “The information bottleneck problem and its applications in machine learning,” IEEE JSAIT, May 2020.




The IB problem

min—I(Y;T) + BI(X; T)

How well T predicts Y How much T compresses X

Tradeoff

Preserving “relevant” information vs. finding “compact” representation

* A natural approximate version of minimal sufficient statistic.

* Closely related to remote source coding.

yn P®n xn
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* Applications of information bottleneck
* |B theory for deep learning
* IB as optimization objective (to improve generalization, robustness)



Task-oriented communication vs. Information bottleneck

Task-oriented Commun.

Encode Transmission 2 Decode
X »>7 »7 >Y Dog
Input data Transmitted Received Target variable
feature feature

Information Bottleneck
B S

Data

X sy T

Feature

Target

Relevance-rate tradeoff
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Task-oriented communication via the IB principle
e e

Y & X —
~~~ ~~
Target Input Feature Rec. Feature Ouput

min I(Z Y) _|_ ,8 I(Z X) * We do not need to recover X from Z
~ L= 4 ij—’ . 7 only needs to retain task-relevant
Ditsksstion R information to infer Y

How well Z predicts Y How much Z compresses X

* Main design challenges:
* How to estimate mutual information?
* How to effectively control communication overhead?
* How to handle dynamic channel conditions?
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Variational Feature Encoding (VFE)

Encode Transmission 2 Decode
X >/ »7 »Y
Input data Transmitted Received Target variable
feature feature
On-device Network Server-based Network

Y

Y
<

Feature
Vector

JSCC Encoder

Powerful server-side network

Lightweight feature extractor: Joint-source-channel coding

to control on-device (JSCC) encoder: design
computation/energy component, to minimize the
output dimension



VFE:Variational approximation

Y o X - Z — 7 =Y
(PR S - Nt N

Target Input Feature Rec. Feature Ouput

—I(Y,2)+ BI(Z, X) / p(y | 2)p(2)logp(y | 2)dydz + 3 / ps(2 | 2)p(x) log o Z(jz')w) dedz — H(Y)

| Varistioma bound I - 20 002 gty | 2z + 5 f p¢(z|m)p(m)1og%dmdz— H(Y)

< constant

Cross- Ent.ropy KL- Dlvergence

Variational Information

Bottleneck (VIB) objective

= Ep(z.y) {Eps(21z) [~ 1028 a0(y|2)] + BDk L (pg(2]2)]lg(2)) }.

M L

1 1 A ) )
= V {'z' E [—log g8 (Ym|Zm )] + BDkL (pe (2|Zm) |lg(2)) }
Empirical estimation m=1 I=1

» Variational approximations
®  py(Z]x) is defined by the neural network (encoder)
*  qg(y|Z) is a variational distribution to approximate p(v|Z)
* q(2) is a variational distribution to approximate p(7)
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VFE: Output feature sparsification

. g(2) : log-uniform distribution as the variational prior
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Variable-length Variational Feature Encoding (VL-VFE)

* To adapt to channel states: variable-length coding

* To reduce signaling overhead, the coding scheme should be consecutive and
monotonic

Low PSNR -= » High PSNR
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(a) Random activation
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(b) Consecutive activation
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VL-VFE:To adapt feature size via selective activation

Dimension importance vi(0?) = Z l9;(c?)]  Soft gate function
e

vi(o?) > ’Yj(O’Q),\?"j > 4 and v;(0?) > v;(62%),Vo? > 5° e promote group
sparsity
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Experiment

* Baselines (data-oriented communication):
* Deep)SCC (Joint Source-Channel Coding)
* Learning-based quantization (w/ ideal channel coding)

Rate-distortion on CIFAR-10 dataset Rate-distortion on Tiny ImageNet dataset
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Experiment

* VFE method can better distinguish the data from different classes compared with
Deep)SCC.
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(a) DeepJSCC: Accuracy = 96.77%, dimension n = 24. (b) Proposed VFE: Accuracy = 97.39%, dimension n = 24.

2-dimensional t-SNE embedding of the received feature in the MNIST classification task with PSNR = 20 dB.
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Experiment:VL-VFE

* VL-VFE achieves higher accuracy and lower latency compared with Deep]SCC in
dynamic channel conditions.
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Task-oriented communication for cooperative inference
via distributed information bottleneck

J. Shao,Y. Mao, and ). Zhang, “Task-oriented communication for multi-device cooperative edge
inference,’ submitted to |IEEE Transactions on Wireless Communications.

https://arxiv.org/abs/2109.00172
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Cooperative perception

* Cooperative localization, detection, tracking, map generation

Occlusion

Intersection

Caillot, Antoine, et al. "Survey on Cooperative Perception in an Automotive Context." IEEE Transactions on Intelligent Transportation Systems (2022).
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Multi-camera cooperative inference

* Cooperation among multiple cameras with distinct views improves sensing
capability.

Vehicle Re-identification Pose Estimation 3D Localization
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Multi-camera cooperative inference

* Objective: Design an efficient method that can fully exploit the correlation among
multiple features in distributed feature encoding.

ﬁ—"%\

Transmission

Inference
» Car

/

Edge Server

Edge Devices

Output
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Cooperative perception vs. Distributed Information Bottleneck (DIB)
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Data Model

Distributed Information
Bottleneck (DIB)

Proposition. Suppose the input variables X, Vk = 1,2, ..., K are conditional independet

given Y. Given the relevance A = I(Y’; Z;.x), the sum rate
Rate  Relevance

K
2@+ D Xk Zi) — I(Y;5 Z3)]
P

Closely related to the distributed

Chief Executive Officer (CEO)
source coding problem

Aguerri, Inaki Estella, and Abdellatif Zaidi. “Distributed variational representation learning.” /IEEE Trans. Pattern Anal. Machine Intell. 120-138, 2019.
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Multi-camera cooperative inference

* Probabilistic modeling with K devices

* Loss functions

Information Bottleneck (IB) Distributed IB (DIB)
K
Lx(y) == H(Y | Zy) + vI(Xk; Zk) Low(B) == HY |Urk) + B> [H(Y | Us) + 1(Z; Uy)]
k=1
[ Xl Feature Extractor 1 Zl i Encoder 1 Lﬁ-
] ) T oY e g A E Output
< [ ] ® 5 :
Variable ¥ . . E ~Y Variable
ZK Uk
L X e Feature Extractor K Encoder K

Input Extracted Encoded
Features Features

samples




Task-relevant feature extraction via IB

Y%—%Xké—)Zk

Information Bottleneck (IB)

Lx(v) := H(Y | Zy) + vI(Xk; Zy,)

* |deally, if extracted features are minimal and sufficient:

Sufficiency
I(Xi; Z) =1(Y; X)) = I(Y; %), k€ {1,...,K}.
K
p(Zixl¥) = [[p(ZlY)
k=1

DIB theorem: optimal
rate-relevance tradeoff

il



Distributed feature encoding via DIB

* Rate-relevance tradeoff via the DIB objective

Proposition 1. (Distributed Information Bottleneck [16]) Suppose the extracted features Zj. for
3 =3 | R K} are conditionally independent given the target variable Y. Each (Ag, Rg) with
3 > 0 is an optimal rate-relevance tuple, i.e., there exists no relevance A > Aj given the sum
rate constraint Ry, = Rz, where

K
Ap=I(Y;Ulx), Re=0s+ Y [I(ZsU}) - I(Y; ), (7)
k=1

*

and the encoded features U ;- are obtained by minimizing the following distributed information
bottleneck (DIB) objective:
K
min EI)HZ({) = H()lllf\)—)} E H()“I.)_/(Zf[.’.)
k=1

{p(ug|zx)

* Main design challenges:
* How to effectively control communication overhead?
* How to estimate mutual information?
* How to compensate the performance loss due to approximations?



Distributed Deterministic Information Bottleneck (DDIB)

* DIB objective
Lom(B):=H(Y | U.k) + 8

e

H(Y | Ur) + 1(Zy; Us)]

Rate

The minimality is only satisfied
in the asymptotic limit

* DDIB objective
K

Lope(B) := H(Y | Ur.x) + 5Z[H(Y | Ur) + Ruit(Uk)]

Enable fine control of communication

overhead, and instantaneous edge
inference for each input sample
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Proposed method:Variational DDIB (VDDIB)

 Using variational inference to estimate the intractable (entropy) terms.

Lopie(B) := H(Y | Upk) + B [H(Y | Uy) + Rui(Uy)]
k=1

4

CVDDIB(JB; ¢7 'l/)) ::Epg(zltK,y) {— ]-Og Dy (y | ul:K)

+5{Z —log py, (y | ux) + Z Rbit(uk)}}
k=1

k=1

Variational distributions: Do (Yluri) o< exp(—C(y, (w13 10))),

Lome(8) < Lppm(B) < Lyppis(B: @, ).
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Minimizing the VDDIB objective may not result in the optimal rate-
relevance tradeoff due to the approximations

Introduce a selective retransmission (SR) mechanism to further
reduce the communication overhead caused by the redundancy
among the extracted features.
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Selective retransmission mechanism

e Retransmission mechanisms

* Error detection + retransmission requests
* E.g.,,ARQ, HARQ

* Selective retransmission

* The edge server selectively activates the edge devices to retransmit their
encoded features based on the informativeness of the received features.

* The mechanism consists of a stopping policy and an attention module.
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Selective retransmission mechanism

* Stopping policy
*  Each edge device is allowed to transmit the encoded feature with a maximum number of T
attempts.
*  Once the received features are sufficient to output a confident result, the remaining
retransmission attempts can be saved.

Output Inference Output Inference Output Inference Output Inference
Result Result Result Result
Act as an error A A A A
detection mechanism 51 = 50 8y > &g dr_1 > &

Confidence ‘ 5 b1 < do [_5; d2 < do @7:]1 dr_1 < do

Scores
A A A

Internal
Predictor 1

3

Received -
Features | Y1:K t=1

<

<
—
-

g
2
E
2
z
)
=1
000 ey {ﬂl'K,t}Z;_ll ;’ {ﬁl:K,t}Z—':l \

f Retransmission
~—
[
b=
=
)
—
o+ b
ﬂ.
f Retransmission
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Selective retransmission mechanism

* Attention module
* Select the most informative features to retransmit based on the attention scores.

Attention
Module

1

{@xa})

D
([ ]

1| a;

Attention Scores

Activate

Deactivate

Activate

Device 1

Device 2

Device K

> [Retransmissi@
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VDDIB with Selective Retransmission Mechanism (VDDIB-SR)

* VDDIB-SR loss function
LvpDIB (,3, ¢ ¢) Pe(z1.rf,y){ logp% (y ‘ Ui. K)

K
‘hﬁ{z —log py, (y | uk) + ZRbit(uk)}}

k=1 k=1
Account for T
predictors \
s
by the SR hani
LvpDIB- SR(BaT b, 9, {¥i}i 1) =Ep,(z1.00) { Z—logpw y | {dx, )] ) BRSNS

K - K /
+ﬁ{z —logpy, (y | wr) + > > Ry ﬁkt)}}

k=1 k=1 t=1
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Performance evaluation

* Cooperative inference tasks

View 1

‘
2

View 2

Two-view MNIST
classification

Twelve-view Shape Recognition on
ModelNet40 dataset
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Performance evaluation

MNIST classification
RSUIH
6 bits 10 bits 14 bits
* The accuracy of the cooperative NN-REG 95.93% o7.49% 07.78%
. . NN-GBI 96.62% 97.79% 98.02%
tasks under different bit ‘
cSAFS 96.97% 97.87% 98.05%
constraints. CAFS 94.14% 97.43% 97.42%
) Data_oriented Communication VDDIB (ours) 97.08% 97.82% 98.06%
VDDIB-SR (T=2) (ours) 97.13% 98.13% 98.22%
leads to
e 1.3 kbits overhead with 98.6% Shape Recoghnition
accuracy in the MNIST R
classification task. 120 bits 240 bits 360 bits
. 120 KB overhead with 92% NN-REG 87.50% 88.25% 89.03%
. . . NN-GBI* 88.82% — —
accuracy in the shape recognition
eSAFS 85.88% 87.87% 89.50%
task. CAFS 86.75% 89.56% 90.67%
VDDIB (ours) 89.25% 90.03% 90.75%
VDDIB-SR (T=2) (ours) 90.25% 91.31% 91.62%

* The GBI quantization algorithm is computationally prohibitive when the number of bits is too large.
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Ablation study

* Impact of the maximum transmission attempts T.
* The performance of the VDDIB-SR method improves withT.
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Ablation study

Impact of the attention module

We propose a baseline method that removes the attention module denoted as VDDIB-
Cascade for comparison.
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VDDIB-SR 91.25% 216
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Conclusions

e Task-oriented communication
e Shift from “how to transmit” to “what to transmit”

* Task-oriented communication for Edge Al
* Edge-assisted inference via information bottleneck
* Cooperative perception via distributed information bottleneck

* Information theory is still our guide
* Rate-distortion theory
* Distributed source coding theory
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Thank youl

* For more details

https://eejzhang.people.ust.hk/
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