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Abstract—Millimeter wave (mmWave) communications has
been considered as a promising technology for 5G cellular net-
works. Exploiting directional beamforming using antenna arrays
to combat path loss is one of the defining features in mmWave
cellular networks. However, previous works on mmWave network
analysis usually adopt simplified antenna patterns for tractability.
In this paper, we show that there are huge discrepancies between
the simplified and actual antenna patterns when investigating the
coverage probability of mmWave networks. Analytical expres-
sions for the coverage probabilities are derived using tools from
stochastic geometry, by considering the actual antenna pattern
with the uniform linear array. Moreover, the impact of the array
size is investigated, which cannot be revealed from existing results
with simplified antenna patterns. Numerical results will show that
large-scale antenna arrays are required for satisfactory coverage
in mmWave cellular networks. Furthermore, dense mmWave
cellular networks are shown to achieve much higher rate coverage
than conventional sub-6 GHz cellular systems.

I. INTRODUCTION

To meet the ever-increasing demands for high-data-rate
multimedia access, the capacity of next-generation wireless
networks has to increase exponentially. One promising way to
boost the capacity is to exploit new spectrum bands. Recently,
millimeter wave (mmWave) bands from 30 GHz to 300 GHz
have been proposed as a promising candidate for new spectrum
in 5G cellular networks, which previously are only considered
for indoor and fixed outdoor scenarios [1].

Highly directional antenna arrays at the transceivers can
compensate for the additional free space path loss caused
by the ten-fold increase of the carrier frequency in mmWave
systems [2]. Recently, channel measurements using directional
antenna arrays have revealed some unique propagation charac-
teristics of mmWave signals [3]. It turns out that mmWave sig-
nals are sensitive to blockages, which causes totally different
path loss laws for the line-of-sight (LOS) and non-line-of-sight
(NLOS) mmWave signals. In addition, dense deployments are
required to relieve the signal interception in mmWave cellular
networks due to the blockage sensitivity, which, fortunately,
fits the evolution of network densification, e.g., by deploying
small cells [4].

More importantly, combined with the poor scattering en-
vironment, directional antennas will dramatically change the
signal power, as well as the interference power. In mmWave
cellular networks, the received signal or interference power is
closely related to the angles of departure/arrival (AoDs/AoAs).
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In particular, the antenna array will provide various power
gains corresponding to different AoDs/AoAs. A slight shift
of AoD/AoA may lead to a large array gain variation when
directional antenna arrays are used. Therefore, it is necessary
and critical to incorporate the impact of antenna arrays when
analyzing mmWave cellular networks.

To maintain analytical tractability, the antenna patterns are
often simplified in previous analysis of mmWave systems,
with the flat-top pattern being a widely used approximation.
Since the directional antenna array is one of the differentiat-
ing features in mmWave cellular systems, it is intriguing to
evaluate its influence on the network performance. However,
it is difficult to depict the impact of antenna arrays when
using simplified antenna patterns. In practice, some critical
parameters of the antenna beam pattern such as beamwidth,
the nth minor lobe maxima, nulls, and front-back ratio are all
determined by the array size. With simplified antenna patterns,
these parameters can only be determined qualitatively and in-
accurately according to the array size. Hence, the simplification
of the antenna pattern results in some difficulty and inaccuracy
when analyzing the performance of mmWave cellular systems.

There exist several previous studies on performance anal-
ysis for mmWave networks [5]–[9]. In [5]–[8], analytical
results on signal-to-interference-plus-noise ratio (SINR) and
rate coverage based on the flat-top pattern were obtained.
Moreover, the channel model was also simplified and did not
reflect the propagation characteristics of mmWave systems.
The actual antenna pattern was adopted in [9] for evaluating
the capacity of an interfered communication link. Nevertheless,
all the interferers were assumed to use the same array gain,
which weakened the practicality of the result.

In this paper, we first demonstrate that the difference be-
tween the simplified and actual antenna patterns will introduce
considerable discrepancies between the theoretical and practi-
cal results. We will then investigate the coverage probability in
the downlink mmWave cellular network with a random spatial
network model, where base stations (BSs) are modeled as a
homogeneous Poisson point process (PPP). We assume that
the BSs adopt analog beamforming to serve the users and
we retain the actual antenna pattern in our work, which is
different from prior works and forms the main challenge for
analysis in the meantime. Based on some reasonable approx-
imations, we derive a tractable expression of the coverage
probability for dense mmWave networks, which contains a
single integral operation, and can be easily and efficiently
computed. Based on the analytical results, the impacts of
antenna array sizes are investigated. It will be shown that large-
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scale antenna arrays are needed in mmWave cellular networks
to maintain an acceptable coverage probability. A comparison
between mmWave cellular networks and conventional sub-6
GHz systems will also be provided, and shall demonstrate the
superiority of mmWave networks.

II. SYSTEM MODEL

In this section, we will first describe the random spatial
network model and blockage model for mmWave cellular
networks. Afterwards, we will present the mmWave channel
model.

A. Network Model

We consider a mmWave cellular network, where BSs and
users are distributed according to two independent homoge-
neous PPPs [10]. Since the user process is stationary and
independent of the BS process, the downlink SINR of the
typical user has the same distribution as the aggregate ones
in the network [10]. We assume that each user has a single
receive antenna, and is served by the nearest BS equipped with
a directional antenna array composed of Nt elements. All BSs
are assumed to transmit with the same transmit power Pt, and
each BS will serve the users in a round-robin fashion, i.e.,
intracell time division multiple access (TDMA) is adopted in
this paper.

We introduce the LOS ball to model the blockage as shown
in Fig. 1, and it has been shown to be accurate in dense
mmWave cellular networks [5]. In this blockage model, we
define a LOS radius R, which symbolizes the average distance
between a user and its nearby blockages, and therefore the
LOS probability of a certain link is one within R and zero
outside the radius. The incorporation of the blockage effects
induces different path loss laws for LOS and NLOS links.
It turns out that NLOS interferers are negligible under dense
BS deployments. In other words, dense mmWave networks
are LOS interference limited. Hence, we will focus on the
interference brought by the LOS interferers, whose spatial
distribution is a PPP, denoted as Φ with density λ, in a finite
area with radius R. Later we will justify this assumption
through simulation in Section V.

Directional antenna arrays are leveraged to provide sig-
nificant beamforming gains to overcome the path loss and to
synthesize highly directional beams. The received signal for a
typical user, denoted as the 0th user, is given by

y0 =
√
βr−

α
2 h0w0

√
Pts0 +

∑
i̸=0

√
βR

−α
2

i hiwi

√
Ptsi + n0,

(1)
where r is the distance between the serving BS and the typical
user, while Ri is the distance between ith BS and the typical
user. A 1×Nt vector hi is used to denote the small scale fading
between the ith BS and the typical user, and the path loss
exponent and intercept are α and β, respectively. In addition,
the beamforming vector of the ith BS is denoted as wi, and
n0 stands for the additive white Gaussian noise (AWGN).

B. Channel Model

Due to high free-space path loss, the mmWave propagation
environment is well characterized by a clustered channel

Signal Links

Typical User

Serving BS of the Typical User

LOS Interferer

NLOS Interferer

Interference Links

Blockages

Fig. 1. A sample network model where BSs and users are modeled as two
independent PPPs, and each user is associated with the nearest BS. The LOS
ball is used to model the blockages in the network.

model, i.e., the Saleh-Valenzuela model [3], which can be
depicted as

hi =
√
Nt

L∑
l=1

αila
H
t (θil), (2)

where (·)H symbolizes the conjugate transpose, and L is the
number of clusters. The gain of the lth cluster is denoted as αil,
which follows independent Nakagami fading for each link [5].
For mmWave channels containing LOS components, the effect
of NLOS signals is marginal since the channel gains of NLOS
paths are typically 20 dB weaker than those of LOS signals [3].
Hence, for the remainder of this paper, we will focus on the
LOS path, i.e., L = 1. In addition, at(θi) represent the transmit
array response vectors corresponding to the AoDs θi, which
are independent and identically distributed (i.i.d.) according to
a uniform distribution on the interval [0, 2π] [3]. In this paper,
we consider the uniform linear array (ULA) with Nt antenna
elements. Therefore, the array response vectors can be written
as

at(θi) =
1√
Nt

[
1, · · · , ejkdx cos θi , · · · , ejkd(Nt−1) cos θi

]T
,

(3)

where d and k are the antenna spacing and wavenumber, and
0 ≤ x < Nt is the antenna index. In order to enhance the
directionality of the beam, the antenna spacing d should be
less than half-wavelength to avoid grating lobes [11].

III. ANALOG BEAMFORMING AND ANTENNA PATTERN

In this section, we will first introduce the optimal analog
beamforming strategy and then illustrate the necessity of
employing the actual antenna pattern when analyzing mmWave
cellular networks.

A. Analog Beamforming

While various space-time processing techniques can be
applied at each multi-antenna mmWave BS, we will focus on
the analog beamforming, which is able to control the beam
direction via phase shifters. Due to the low cost and power
consumption, analog beamforming has already been used in
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(a) Visualization of two different
antenna patterns.
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Fig. 2. The comparison between the flat-top pattern and the actual pattern.

some mmWave systems such as WiGig (IEEE 802.11ad) [1].
Assuming the AoD of the channel between the ith BS and its
serving user is ϕi, the optimal analog beamforming vector is

wi = at(ϕi), (4)

which means the BS should align the beam direction exactly
with the AoD of the channel to obtain the maximum power
gain.

B. Antenna Pattern

Based on the optimal analog beamforming vector (4), for
the typical user, the power gain provided by the small scale
fading and beamforming of the ith BS can be expressed as

|hiwi|2 = Nt |αi|2
∣∣aHt (θi)at(ϕi)

∣∣2 ∆
= NtgiG(θi, ϕi), (5)

where gi is the power gain of small scale fading and G(θi, ϕi)
is the normalized array gain of the ith BS, which can be
expressed as

G(θi, ϕi) =
∣∣aHt (θi)at(ϕi)

∣∣2
=

1

N2
t

∣∣∣∣∣
Nt−1∑
x=0

ejkdx(cos θi−cosϕi)

∣∣∣∣∣
2

=
sin2

[
Nt

2 kd(cos θi − cosϕi)
]

N2
t sin2

[
1
2kd(cos θi − cosϕi)

] .
(6)

The flat-top pattern is often used as an approximation of
the actual antenna pattern, where the array gains within the
half-power beamwidth (HPBW) [11] are assumed to be the
maximum power gain and the array gains corresponding to
the remaining AoDs are approximated to be the first minor
maximum gain of the actual pattern, as shown in Fig. 2(a)
[5]. However, this approximation will introduce huge discrep-
ancies when we evaluate the network coverage probability. A
simulation result1 in Fig. 2(b) shows that there is a large gap
between the SINR coverage probabilities using two different
antenna patterns.

1The parameter setting is the same as that of Fig. 4 in Section V.

More importantly, given the operating frequency and the
antenna spacing, the antenna pattern is critically determined
by the array size. In the flat-top pattern, however, it is very
difficult to quantitatively and accurately depict the variation
of the HPBW and the first minor maximum for different
array sizes and AoDs. In other words, the simplified antenna
patterns obliterate the possibility of analyzing the impact of
directional antenna arrays, which is a critical and unique issue
in mmWave systems. Hence, it is necessary to retain the actual
antenna pattern in the analysis of mmWave cellular networks,
in order to investigate the role of the antenna array in mmWave
networks and to ensure the consistency with practical systems.

IV. COVERAGE ANALYSIS

In this section, we will derive a tractable expression for
the coverage probability considering the actual antenna pattern.
The bottleneck of the analysis is the distribution of the inter-
ference power due to the complicated form of the normalized
array gain G(θi, ϕi). Based on some approximations, we will
provide an analytical result which can be easily evaluated.

A. Signal-to-interference-plus-noise Ratio

We assume that each BS has full information about the
AoD of the channel between itself and its serving user,
and can align the beam to the AoD direction using analog
beamforming. From (1)-(6), the receive SINR is given by

SINR =
PtNt|α0|2

∣∣aHt (θ0)w0

∣∣2 βr−α

σ2 +
∑

i∈Φ\0 PtNt|αi|2
∣∣aHt (θi)wi

∣∣2 βR−α
i

=
g0r

−α

σ2
n +

∑
i∈Φ\0 giG(θi, ϕi)R

−α
i

∆
=

g0r
−α

σ2
n + I

,

(7)

where gi is a Gamma distributed random variable according
to the Nakagami fading assumption, and σ2

n = σ2

βPtNt
is the

normalized noise. In this paper, we will evaluate the coverage
probability, which is defined as the probability that the received
SINR is greater than a given threshold γ, i.e.,

pc(γ) = P (SINR > γ) , (8)

where SINR is given in (7).

B. Analysis of Coverage Probability

Since we assume that each user is served by the nearest BS
and the PPP Φ is in a finite area with radius R, the conditional
distribution of the distance r between the serving BS and the
typical user is

f(r) =
2πλr

1− e−λπR2 e
−πλr2 , (9)

and for dense networks, we have e−λπR2 ≈ 0. Based on (7)
and (8), the coverage probability is given by

pc(γ) =

∫ R

0

f(r)P
[
g0 > γrα(σ2

n + I)
]
dr, (10)

where g0 is a normalized gamma random variable with the
Nakagami fading parameter N .



I(r) =


r exp

[
−ξnγσ2

nr
α − πλr2 + 4π2λea

kdANt

∞∑
p=1

(−1)p

p!

p∑
q=1

(
R2−αqrαq − r2

)
I(p, q)

]
α ̸= 2

r exp

[
−ξnγσ2

nr
2 − πλr2 + 2π2λξnγ(lnr−lnR)

kdANt
r2 + 4π2λea

kdANt

∞∑
p=2

(−1)p

p!

p∑
q=2

(R2−2qr2q − r2)I(p, q)

]
α = 2

(20)

Lemma 1. (From [12]) For a normalized gamma random
variable g with parameter N , the probability P(g < γ) can
be tightly upper bounded by

P(g < γ) <
(
1− eξγ

)N
, (11)

where ξ = N(N !)−
1
N .

Based on Lemma 1, a tight lower bound of the probability
P
[
g0 > γrα(σ2

n + I)
]

can be derived as2

P
[
g0 > γrα(σ2

n + I)
]

> 1− EI

[(
1− e−ξγrα(σ2

n+I)
)N

]
=

N∑
n=1

(−1)n+1

(
N

n

)
e−ξnγrασ2

nLI(ξnγr
α).

(12)

It can be seen from (12) that the main task to obtain the cov-
erage probability pc(γ) is to derive the Laplace transformation
of the interference LI(s), which can be further derived as3

LI(s)
(a)
= exp

{
−2πλ

∫ R

r

(
1− Egi,Gi [exp(−sgiGix

−α)]
)
xdx

}
(b)

≥ exp

{
−2πλ

∫ R

r

(
1− EGi [exp(−sGix

−α)]
)
xdx

}
,

(13)

where (a) follows the Laplace functional of the PPP Φ, and
(b) follows the Jensen’s inequality. One intuitive way to
manipulate the moment-generating function with respect to
the array gain in (13) is to directly derive the distribution of
the array gain. However, this is highly intractable due to the
complicated form of (6). We will next give an analytical result
based on some reasonable approximations.

Approximation 1: We approximate the denominator of the
array gain function as N2

t

[
1
2kd(cos θi − cosϕi)

]2
. In (6), the

antenna spacing should be less than half-wavelength. There-
fore, the term 1

2kd(cos θi − cosϕi) should be within a small
range near zero, and the approximation is established due to
the fact that sinx ≈ x when x is small.

Approximation 2: The distribution of the random variable
cos θi − cosϕi cannot be expressed in a closed-form, which
is the main obstacle for further analysis. Here, we propose
to use a uniform distribution in [−A,A] to approximate the
original distribution. Although this approximation is heuristic,
to some extent, it creates the possibility to analyze the coverage
probability with the actual antenna pattern, and the accuracy
will be tested through simulation in Section V.

2Lemma 1 also gives a tight lower bound of the coverage probability in
(10).

3The array gain G(θi, ϕi) is abbreviated as Gi for notational simplicity.

Based on Approximations 1 and 2, the array gain (6) is
approximated as the square of a sinc function with respect to
a uniformly distributed variable φi as follows

G(φi) ≈
sin2

(
Nt

2 kdφi

)(
Nt

2 kdφi

)2 . (14)

Lemma 2. The definite integral from 0 to ∞ of the q-th power
of the squared sinc function is given by∫ ∞

0

sin2q φ

φ2q
dφ = qπ

q∑
k=0

(−1)k(q − k)2q−1

k!(2q − k)!
. (15)

Proof: Through Euler’s formula and the binomial theo-
rem, the original integral can be manipulated as

lim
ϵ→0+

1

2

1

(2j)2q

2q∑
k=0

(−1)k
(
2q

k

)∫ ∞

−∞

ejφ2(q−k)

(x− jϵ)q
dφ. (16)

According to the residue theorem and Cauchy differentiation
formula, we find the original integral equals

1

2

1

(2j)2q

q∑
k=0

(−1)k
(
2q

k

)
2πj

(2q − 1)!

d2q−1

dφ2q−1
ejφ2(q−k), (17)

which can be simplified as (15).

Based on Lemma 2 and (14), we can tackle the moment-
generating function in (13), which is the bottleneck of the
analysis.

Lemma 3. The moment-generating function with respect to
the array gain EGi [exp(−sGix

−α)] can be expressed as

EGi [exp(−sGix
−α)]

≈ 1 +
2πea

kdANt

∞∑
p=1

(−1)p

p!

p∑
q=1

(
p

q

)
sq×

x−αqap−qq

q∑
k=0

(−1)k(q − k)2q−1

k!(2q − k)!
.

(18)

Proof: See Appendix A.

Now, with Lemma 3, we present the main result on the
SINR coverage probability pc(γ) as follows.

Theorem 1. The SINR coverage probability pc(γ) can be
computed as

pc(γ) ≈
2πλ

1− e−λπR2

N∑
n=1

(−1)
n+1

(
N

n

)∫ R

0

I(r)dr, (19)

where I(r) is given by (20) and

I(p, q) =

(
p

q

)
(ξnγ)qap−qq

2− αq

q∑
k=0

(−1)k(q − k)2q−1

k!(2q − k)!
. (21)



Proof: The proof is established by applying Lemma 3 to
(13) with some basic manipulations on integral operations and
then substituting into (9), (10), and (12).

Remark 1: The analytical result of the coverage probability
given in (19) can be easily evaluated by numerical integration.
Although (20) involves a summation of infinite terms, it will be
shown in Section V that the high-order terms contribute little to
the whole summation, and using finite terms is accurate enough
for numerical computation. Furthermore, a proper choice of the
parameter a at which the series expands will save the number
of terms to be calculated.

V. NUMERICAL RESULTS

In this section, we will first examine the approximation
made in Section IV. We will then demonstrate our result
through simulations. We assume that the bandwidth is 500
MHz, and the transmit power of all the BSs is set to 1
Watt. The separation between the antenna elements is quarter-
wavelength to avoid grating lobes. From the recent measure-
ments of LOS mmWave signal propagations [3], the path
loss exponent α is equal to or slightly larger than two and
β = −61.4 dB. All simulation results are averaged over 500
thousand realizations.

A. Justification of Approximation 2

In Approximation 2, we proposed to approximate the distri-
bution of cos θi−cosϕi as a uniform distribution. Here we will
justify this approximation through evaluating the cumulative
distribution functions of G(θi, ϕi) in (6) and G(φi) in (14). We
approximate the parameter in uniform distribution A = 0.8,
and this value will be used in all the following numerical
evaluations.
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Fig. 3. The cumulative distribution functions of G(θi, ϕi) in (6) and G(φi)
in (14).

From Fig. 3, we can see that, based on Approximation
2, two cumulative distribution functions almost coincide with
each other. It indicates that the distributions of two array gains
are almost the same. This justifies that Approximation 2 is
reasonable in the sense of the distribution of array gains, which
is the critical part in the analysis.

B. Coverage Probability Evaluation

We shall now provide the simulation results to verify the
analytical result in Section IV. The Nakagami fading parameter
N is set to 2, and the path loss exponent is α = 2. We compare
the simulation results and the analytical results from Theorem
1. To verify the assumption that mmWave networks are LOS
interference limited, we also include the NLOS BSs in the
simulation, where we assume that N = 1, i.e., Rayleigh fading,
βn = −72 dB, and the path loss exponent α = 4 for the NLOS
interfering signals.
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Fig. 4. SINR coverage probability in dense mmWave cellular networks with
different parameter settings.

Fig. 4 verifies that dense mmWave cellular networks are
indeed LOS interference limited, which means that the NLOS
interference is small compared to the total interference due to
the more severe path loss and small scale fading. When we
numerically calculate (19) in Theorem 1, a finite number of
terms are included in the summation, as illustrated in Remark
1, until the numerical values converge. We propose to set
a = −ξnγ/2 to save the number of the terms involved in
the summation. Fig. 4 also shows that the approximations and
the derivations in Section IV are reasonable and accurate for
different settings of the network, so the coverage probability
pc(γ) provided in Theorem 1 can be regarded as a reliable
analytical result when considering the directional antenna
pattern in mmWave cellular networks.

C. Impact of Array Size

In this subsection, we will investigate the impact of direc-
tional antenna arrays and compare mmWave cellular systems
with conventional sub-6 GHz ones. In mmWave networks, we
assume that the LOS radius is 200 meters, the Nakagami fading
parameter N = 3, and the path loss exponent α = 2.1. In
conventional networks, we assume that small scale fading is
i.i.d. Rayleigh fading and the path loss exponent equals 4. All
BSs use maximum ratio transmission beamforming to transmit
a single data stream with 100 MHz available bandwidth. For
both systems, we assume a dense BS deployment with density
of 1× 10−3 BSs per unit area, and evaluate the rate coverage
probability with the antenna array size from 64 to 256.

The rate coverage probability is defined as P[W log2(1 +
SINR) > γ̂] = pc(2

γ̂/W − 1), where W is the bandwidth
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Fig. 5. Rate coverage probability in dense mmWave cellular networks with
different parameter settings.

and γ̂ is the rate threshold. The results in Fig. 5 show
that, for a given rate requirement, large-scale antenna arrays
are needed in mmWave cellular networks to guarantee an
acceptable coverage probability. It also shows that the coverage
probability of conventional systems is much lower than that
of mmWave networks. This phenomenon shows that the large
bandwidth and directional antenna arrays benefit mmWave
systems. Moreover, as it is much easier to implement large-
scale antenna arrays in mmWave systems than conventional
ones, thanks to the small wavelength, mmWave networks stand
out as an excellent candidate for future 5G systems to provide
multi-gigabits per second data rate.

VI. CONCLUSIONS

One main contribution of this paper was identifying the
importance of using the actual antenna pattern in the cov-
erage analysis for mmWave networks. In particular, it was
demonstrated that the widely used flat-top antenna pattern
will result in a large performance gap compared to practical
systems. On the contrary, with the actual antenna pattern,
we were able to investigate the impact of the array size on
the coverage probability. Numerical results showed that large-
scale directional antenna arrays are needed in mmWave cellu-
lar systems to guarantee an acceptable coverage probability.
MmWave cellular networks, taking advantage of the wide
bandwidth and exploiting directional transmission, were shown
to achieve a much higher rate coverage than conventional sub-
6 GHz networks. It will be interesting to extend the coverage
analysis to mmWave cellular networks with more advanced
precoding techniques, e.g., hybrid precoding [13], [14], which
can support spatial multiplexing.

APPENDIX A
PROOF OF LEMMA 2

Based on the approximated array gain (14), we can derive
the moment-generating function as

EGi [exp(−sGix
−α)]
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where (c) follows the series expansion of the exponential
function at point a. Then switching the order of the integral
and summation, we can find that (22) is equal to

ea

A

∞∑
p=0

(−1)p

p!

[
Aap +

p∑
q=1

(
p

q

)
sq×

x−αqap−q

∫ A

0

sin2q
(
Nt

2 kdφi

)(
Nt

2 kdφi

)2q dφi

]
(d)
<

ea

A

∞∑
p=0

(−1)p

p!

[
Aap +

p∑
q=1

(
p

q

)
sq×

x−αqap−q 2qπ

kdNt

q∑
k=0

(−1)k(q − k)2q−1

k!(2q − k)!

]
,

(23)

which gives the expression in (18), and (d) follows Lemma
2 given that, for the the tails of the 2q-th power of the sinc
function, the integrals are negligible when Nt is not too small.
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